From simplex to mixed element: Extension of a vertex-centered discretization, focus on accuracy analysis and 3D RANS applications

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-12-19 DOI:10.1016/j.compfluid.2024.106526
Cosimo Tarsia Morisco , Frédéric Alauzet , Guillaume Puigt
{"title":"From simplex to mixed element: Extension of a vertex-centered discretization, focus on accuracy analysis and 3D RANS applications","authors":"Cosimo Tarsia Morisco ,&nbsp;Frédéric Alauzet ,&nbsp;Guillaume Puigt","doi":"10.1016/j.compfluid.2024.106526","DOIUrl":null,"url":null,"abstract":"<div><div>Standard unstructured-grid CFD simulations generally rely on a cell-centered Finite Volume discretization applied to mixed-element grids. The interest in such approach is using elements that are aligned along a privileged direction in the region close to the boundary, and at the same time unstructured elements near complex geometrical details or in farfield regions. This paper proposes a novel version of the mixed Finite Element/Finite Volume approximation (Debiez and Dervieux 2000), which is a vertex-centered method known to produce second-order accurate solutions even on highly anisotropic adapted meshes composed of simplex elements (i.e., triangles and tetrahedra) (Alauzet and Loseille, 2010; Barral et al., 2017; Alauzet et al., 2018; Belme et al., 2019). The extension of this approach for two-dimensional mixed-element meshes was proposed in Tarsia Morisco et al. (2024) and involves the APproximated Finite Element -APFE- method (Puigt et al., 2010) to discretize diffusion. In this work we make the definitive step forward to handle three-dimensional mixed-element meshes: designing a second-order accurate scheme for smooth meshes involving tetrahedra, prisms and pyramids.</div><div>The present work focuses on two key aspects. One concerns the 3D extension of the APFE method. A detailed error analysis of this vertex-centered approach is provided for prisms and pyramids. The second ingredient deals with an innovative algorithm to compute the truncation error for linear problems. In contrast to usual methods, the one proposed here permits to compute exactly the coefficients related to each terms of error for any mesh, and can be implemented in any solver with a low development effort.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"288 ","pages":"Article 106526"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003578","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Standard unstructured-grid CFD simulations generally rely on a cell-centered Finite Volume discretization applied to mixed-element grids. The interest in such approach is using elements that are aligned along a privileged direction in the region close to the boundary, and at the same time unstructured elements near complex geometrical details or in farfield regions. This paper proposes a novel version of the mixed Finite Element/Finite Volume approximation (Debiez and Dervieux 2000), which is a vertex-centered method known to produce second-order accurate solutions even on highly anisotropic adapted meshes composed of simplex elements (i.e., triangles and tetrahedra) (Alauzet and Loseille, 2010; Barral et al., 2017; Alauzet et al., 2018; Belme et al., 2019). The extension of this approach for two-dimensional mixed-element meshes was proposed in Tarsia Morisco et al. (2024) and involves the APproximated Finite Element -APFE- method (Puigt et al., 2010) to discretize diffusion. In this work we make the definitive step forward to handle three-dimensional mixed-element meshes: designing a second-order accurate scheme for smooth meshes involving tetrahedra, prisms and pyramids.
The present work focuses on two key aspects. One concerns the 3D extension of the APFE method. A detailed error analysis of this vertex-centered approach is provided for prisms and pyramids. The second ingredient deals with an innovative algorithm to compute the truncation error for linear problems. In contrast to usual methods, the one proposed here permits to compute exactly the coefficients related to each terms of error for any mesh, and can be implemented in any solver with a low development effort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
A hybrid immersed-boundary/front-tracking method for interface-resolved simulation of droplet evaporation Non-dimensional meshing criterion of mean flow field discretization for RANS and LES Mitigation of Shock wave boundary layer interaction using surface arc plasma energy actuators: A computational study Goal-oriented adaptive sampling for projection-based reduced-order models Improved particle level set method with higher-order kernel function correction: Enhancing accuracy and conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1