Using Delayed Detached Eddy Simulation to create datasets for data-driven turbulence modeling: A periodic hills with parameterized geometry case

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-12-04 DOI:10.1016/j.compfluid.2024.106506
Davide Oberto , Davide Fransos , Stefano Berrone
{"title":"Using Delayed Detached Eddy Simulation to create datasets for data-driven turbulence modeling: A periodic hills with parameterized geometry case","authors":"Davide Oberto ,&nbsp;Davide Fransos ,&nbsp;Stefano Berrone","doi":"10.1016/j.compfluid.2024.106506","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the emerging field of data-driven turbulence models, there is a lack of systematic high-fidelity datasets at flow configurations changing continuously with respect to geometrical/physical parameters. In this work, we investigate the possibility of using Delayed Detached Eddy Simulation (DDES) to generate reliable datasets in a significantly cheaper manner compared to the DNS or LES counterparts. To do that, we perform 25 simulations of the geometrically-parameterized periodic hills test case to deal with different hills steepnesses. We firstly check the accuracy of our results by comparing one simulation with the benchmark case of Xiao et al. Then, we use such database to train the turbulent viscosity-Vector Basis Neural Network (<span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-VBNN) data-driven turbulence model. The latter outperforms the classic <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> SST RANS model, proving that our generated dataset can be useful for data-driven turbulence modeling and opening the opportunity to exploit DDES to create systematic datasets for data-driven turbulence modeling.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"288 ","pages":"Article 106506"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003372","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the emerging field of data-driven turbulence models, there is a lack of systematic high-fidelity datasets at flow configurations changing continuously with respect to geometrical/physical parameters. In this work, we investigate the possibility of using Delayed Detached Eddy Simulation (DDES) to generate reliable datasets in a significantly cheaper manner compared to the DNS or LES counterparts. To do that, we perform 25 simulations of the geometrically-parameterized periodic hills test case to deal with different hills steepnesses. We firstly check the accuracy of our results by comparing one simulation with the benchmark case of Xiao et al. Then, we use such database to train the turbulent viscosity-Vector Basis Neural Network (νt-VBNN) data-driven turbulence model. The latter outperforms the classic kω SST RANS model, proving that our generated dataset can be useful for data-driven turbulence modeling and opening the opportunity to exploit DDES to create systematic datasets for data-driven turbulence modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board A hybrid immersed-boundary/front-tracking method for interface-resolved simulation of droplet evaporation Non-dimensional meshing criterion of mean flow field discretization for RANS and LES A reconstruction technique for high-order variational finite volume schemes based on conjugate gradient method Mitigation of Shock wave boundary layer interaction using surface arc plasma energy actuators: A computational study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1