Paul Over , Sergio Bengoechea , Thomas Rung , Francesco Clerici , Leonardo Scandurra , Eugene de Villiers , Dieter Jaksch
{"title":"Boundary treatment for variational quantum simulations of partial differential equations on quantum computers","authors":"Paul Over , Sergio Bengoechea , Thomas Rung , Francesco Clerici , Leonardo Scandurra , Eugene de Villiers , Dieter Jaksch","doi":"10.1016/j.compfluid.2024.106508","DOIUrl":null,"url":null,"abstract":"<div><div>The paper presents a variational quantum algorithm to solve initial–boundary value problems described by second-order partial differential equations. The approach uses hybrid classical/quantum framework that is well suited for quantum computers of the current noisy intermediate-scale quantum era. The partial differential equation is initially translated into an optimal control problem with a modular control-to-state operator (ansatz). The objective function and its derivatives required by the optimizer can efficiently be evaluated on a quantum computer by measuring an ancilla qubit, while the optimization procedure employs classical hardware. The focal aspect of the study is the treatment of boundary conditions, which is tailored to the properties of the quantum hardware using a correction technique. For this purpose, the boundary conditions and the discretized terms of the partial differential equation are decomposed into a sequence of unitary operations and subsequently compiled into quantum gates. The accuracy and gate complexity of the approach are assessed for second-order partial differential equations by classically emulating the quantum hardware. The examples include steady and unsteady diffusive transport equations for a scalar property in combination with various Dirichlet, Neumann, or Robin conditions. The results of this flexible approach display a robust behavior and a strong predictive accuracy in combination with a remarkable <em>polylog</em> complexity scaling in the number of qubits of the involved quantum circuits. Remaining challenges refer to adaptive ansatz strategies that speed up the optimization procedure.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"288 ","pages":"Article 106508"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003396","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a variational quantum algorithm to solve initial–boundary value problems described by second-order partial differential equations. The approach uses hybrid classical/quantum framework that is well suited for quantum computers of the current noisy intermediate-scale quantum era. The partial differential equation is initially translated into an optimal control problem with a modular control-to-state operator (ansatz). The objective function and its derivatives required by the optimizer can efficiently be evaluated on a quantum computer by measuring an ancilla qubit, while the optimization procedure employs classical hardware. The focal aspect of the study is the treatment of boundary conditions, which is tailored to the properties of the quantum hardware using a correction technique. For this purpose, the boundary conditions and the discretized terms of the partial differential equation are decomposed into a sequence of unitary operations and subsequently compiled into quantum gates. The accuracy and gate complexity of the approach are assessed for second-order partial differential equations by classically emulating the quantum hardware. The examples include steady and unsteady diffusive transport equations for a scalar property in combination with various Dirichlet, Neumann, or Robin conditions. The results of this flexible approach display a robust behavior and a strong predictive accuracy in combination with a remarkable polylog complexity scaling in the number of qubits of the involved quantum circuits. Remaining challenges refer to adaptive ansatz strategies that speed up the optimization procedure.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.