Shengzhi Huang , Yong Huang , Yinpeng Liu , Zhuoran Luo , Wei Lu
{"title":"Are large language models qualified reviewers in originality evaluation?","authors":"Shengzhi Huang , Yong Huang , Yinpeng Liu , Zhuoran Luo , Wei Lu","doi":"10.1016/j.ipm.2024.103973","DOIUrl":null,"url":null,"abstract":"<div><div>Large language models (LLMs) are a new generation of conversational language model with impressive semantic comprehension, text generation, and knowledge inference capabilities. LLMs are significantly influencing the development of science by assisting researchers in analyzing, understanding, and grasping original knowledge in scientific papers. This study investigates LLMs’ potential as qualified reviewers in originality evaluation in zero-shot learning, utilizing a unique, manually crafted prompt. Using biomedical papers as the data source, we constructed two evaluation datasets based on Nobel Prize papers and disruptive index. The evaluation performance of multiple LLMs of different types and scales on the datasets was scrutinized through the analysis of originality score (OS), originality type (OT), and originality description (OD), all of which were generated by the LLM. Our results show that LLMs can to some extent discern papers with distinct originality level via OS; however, they appear to be overly lenient reviewers. In LLMs’ evaluation mechanism, five distinct OTs reflecting varied research contributions do not manifest independently, but together they positively influence OS. Of all the LLMs analyzed, GPT-4 stood out as able to produce the most readable ODs, effectively explaining the inference process for both OS and OT from the perspectives of completeness, logicality, and regularity.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 103973"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003327","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) are a new generation of conversational language model with impressive semantic comprehension, text generation, and knowledge inference capabilities. LLMs are significantly influencing the development of science by assisting researchers in analyzing, understanding, and grasping original knowledge in scientific papers. This study investigates LLMs’ potential as qualified reviewers in originality evaluation in zero-shot learning, utilizing a unique, manually crafted prompt. Using biomedical papers as the data source, we constructed two evaluation datasets based on Nobel Prize papers and disruptive index. The evaluation performance of multiple LLMs of different types and scales on the datasets was scrutinized through the analysis of originality score (OS), originality type (OT), and originality description (OD), all of which were generated by the LLM. Our results show that LLMs can to some extent discern papers with distinct originality level via OS; however, they appear to be overly lenient reviewers. In LLMs’ evaluation mechanism, five distinct OTs reflecting varied research contributions do not manifest independently, but together they positively influence OS. Of all the LLMs analyzed, GPT-4 stood out as able to produce the most readable ODs, effectively explaining the inference process for both OS and OT from the perspectives of completeness, logicality, and regularity.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.