{"title":"The distance function on Coxeter-like graphs and self-dual codes","authors":"Marko Orel , Draženka Višnjić","doi":"10.1016/j.ffa.2025.102580","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the set of all invertible <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric matrices over the binary field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the graph with the vertex set <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> where a pair of matrices <span><math><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>}</mo></math></span> form an edge if and only if <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. In particular, <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the well-known Coxeter graph. The distance function <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is described for all matrices <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The diameter of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is computed. For odd <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, it is shown that each matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> where <em>I</em> is the identity matrix induces a self-dual code in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>. Conversely, each self-dual code <em>C</em> induces a family <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> of such matrices <em>A</em>. The families given by distinct self-dual codes are disjoint. The identification <span><math><mi>C</mi><mo>↔</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogonal group <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> acts transitively on the set of all self-dual codes in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102580"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the set of all invertible symmetric matrices over the binary field . Let be the graph with the vertex set where a pair of matrices form an edge if and only if . In particular, is the well-known Coxeter graph. The distance function in is described for all matrices . The diameter of is computed. For odd , it is shown that each matrix such that and where I is the identity matrix induces a self-dual code in . Conversely, each self-dual code C induces a family of such matrices A. The families given by distinct self-dual codes are disjoint. The identification provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogonal group acts transitively on the set of all self-dual codes in .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.