Tong Ren , Mengzhuo Li , De Wang , Jia Yang , Lingbo Kong , Long He
{"title":"Theoretical and numerical studies of heat and humidity transfer in underground ventilation corridor","authors":"Tong Ren , Mengzhuo Li , De Wang , Jia Yang , Lingbo Kong , Long He","doi":"10.1016/j.ijheatfluidflow.2025.109765","DOIUrl":null,"url":null,"abstract":"<div><div>Corridor ventilation is a crucial measure to provide good air quality for underground buildings, it is necessary to predict and study the variation law of the environment in the corridor. Theoretical analysis and numerical simulation of heat and humidity transfer were carried out and the equations to predict air temperature and moisture content are proposed for the underground corridor. Corridor structure (e.g. cross-section diameter, length) and environmental parameters (e.g. wall temperature, air velocity, inlet air temperature, and relative humidity) are discussed in detail. The corridor structure parameters have been found to have little impact on the cooling and dehumidification effect when the corridor length x/L > 0.1. The inlet air temperature and velocity are the most crucial parameters for the cooling and dehumidification efficiency. The inlet air relative humidity and wall temperature are the main factors of fog formation in the corridor. Therefore, reasonable design and matching of corridor parameters is very important for the environmental control in underground corridors.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109765"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25000232","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Corridor ventilation is a crucial measure to provide good air quality for underground buildings, it is necessary to predict and study the variation law of the environment in the corridor. Theoretical analysis and numerical simulation of heat and humidity transfer were carried out and the equations to predict air temperature and moisture content are proposed for the underground corridor. Corridor structure (e.g. cross-section diameter, length) and environmental parameters (e.g. wall temperature, air velocity, inlet air temperature, and relative humidity) are discussed in detail. The corridor structure parameters have been found to have little impact on the cooling and dehumidification effect when the corridor length x/L > 0.1. The inlet air temperature and velocity are the most crucial parameters for the cooling and dehumidification efficiency. The inlet air relative humidity and wall temperature are the main factors of fog formation in the corridor. Therefore, reasonable design and matching of corridor parameters is very important for the environmental control in underground corridors.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.