Design criteria and performance optimization of high-power micro heat sinks

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2025-03-08 DOI:10.1016/j.ijheatfluidflow.2025.109797
Jiali Zhuo, Yuling Zhai, Hao Huang, Zhouhang Li
{"title":"Design criteria and performance optimization of high-power micro heat sinks","authors":"Jiali Zhuo,&nbsp;Yuling Zhai,&nbsp;Hao Huang,&nbsp;Zhouhang Li","doi":"10.1016/j.ijheatfluidflow.2025.109797","DOIUrl":null,"url":null,"abstract":"<div><div>A three-dimensional mathematical model of micro heat sinks was developed to achieve efficient thermal management in microelectronic devices. Comprehensive design criteria based on the theory of heat transfer enhancement at the micro-scale are also proposed. On this basis, the size of the microchannel structure is designed, considering a fixed heat transfer area and heat flux. Then, a combination of a response surface approximation, an non-dominated sorting genetic algorithm, and <em>k</em>-means clustering are used to optimize the width and height of each microchannel. The designed structure size is combined with supercritical carbon dioxide (SCO<sub>2</sub>) working fluid to optimize the thermal performance of micro heat sinks. The optimization results demonstrated that the clustering point I of the evaluation factor <em>j</em>/<em>f</em><sub>ave</sub> increased by 4.11 %, while the wall temperature <em>T<sub>w</sub></em> decreased by 4.69 %. Compared to the SCO<sub>2</sub> scenario, the pump power and total entropy generation were respectively 61.63 % and 6.9 % lower than those of water with a mass flow rate of 6000 kg/m<sup>2</sup>·s and an inlet temperature of 293 K. For inlet temperatures ranging from 303 K to 307 K, the evaluation factor values reported were 0.2405, 0.2018, 0.1045, 0.1453, and 0.1747 under a pressure of 7.6 MPa and flow rate of 4000 kg/m<sup>2</sup>·s. For mass flow rates ranging from 3000 kg/m<sup>2</sup>·s to 6000 kg/m<sup>2</sup>·s, values of <em>j</em>/<em>f</em><sub>ave</sub> were 0.0591, 0.1045, 0.1515, and 0.2084, indicating good thermal performance at relatively high mass flow rates. It was noted that as the distance from the critical point of the channel increases, the overall heat transfer performance is improved when the inlet temperature is less than the critical temperature.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"114 ","pages":"Article 109797"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25000554","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A three-dimensional mathematical model of micro heat sinks was developed to achieve efficient thermal management in microelectronic devices. Comprehensive design criteria based on the theory of heat transfer enhancement at the micro-scale are also proposed. On this basis, the size of the microchannel structure is designed, considering a fixed heat transfer area and heat flux. Then, a combination of a response surface approximation, an non-dominated sorting genetic algorithm, and k-means clustering are used to optimize the width and height of each microchannel. The designed structure size is combined with supercritical carbon dioxide (SCO2) working fluid to optimize the thermal performance of micro heat sinks. The optimization results demonstrated that the clustering point I of the evaluation factor j/fave increased by 4.11 %, while the wall temperature Tw decreased by 4.69 %. Compared to the SCO2 scenario, the pump power and total entropy generation were respectively 61.63 % and 6.9 % lower than those of water with a mass flow rate of 6000 kg/m2·s and an inlet temperature of 293 K. For inlet temperatures ranging from 303 K to 307 K, the evaluation factor values reported were 0.2405, 0.2018, 0.1045, 0.1453, and 0.1747 under a pressure of 7.6 MPa and flow rate of 4000 kg/m2·s. For mass flow rates ranging from 3000 kg/m2·s to 6000 kg/m2·s, values of j/fave were 0.0591, 0.1045, 0.1515, and 0.2084, indicating good thermal performance at relatively high mass flow rates. It was noted that as the distance from the critical point of the channel increases, the overall heat transfer performance is improved when the inlet temperature is less than the critical temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Characteristics of turbulent Taylor-Couette flow of low-viscosity fluid on plastron-covered superhydrophobic surface Editorial Board Design criteria and performance optimization of high-power micro heat sinks Experimental visualization of dry regions formation for Falling-Film flow patterns GMDH and RSM models for prediction of heat transfer parameters in an ultrasonic vibrating fin-and-tube heat exchanger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1