Zi-Qi Chen , Han Liu , Xiao-Jing Wang , Jian Fan , Yue-Min Xie , Man-Keung Fung
{"title":"Ultra-high-efficiency white organic light-emitting diodes based on TADF material incorporated efficient exciplex hosts","authors":"Zi-Qi Chen , Han Liu , Xiao-Jing Wang , Jian Fan , Yue-Min Xie , Man-Keung Fung","doi":"10.1016/j.orgel.2025.107196","DOIUrl":null,"url":null,"abstract":"<div><div>White organic light-emitting diode (WOLED) has been recognized as a healthy light source. However, the device performance is still limited by the hosts or emitters. Herein, multiple-exciplex hosts are developed for WOLEDs, in which a novel exciplex host consisting of a thermally activated delayed fluorescent material, triazine–carbazole (Trz-PhCz), and an electron-transport material, 4,6-bis[3,5-(dipyrid-4-yl)phenyl]-2-methylpyrimidine (B4PyMPM), is adopted for green, yellow, orange and red phosphorescent dopants, of which high external quantum efficiencies (EQEs) of 25.0 %, 30.7 %, 32.5 % and 26.2 %, respectively, are achieved. On the other hand, a high-energy exciplex host consisting of 9,9′-biphenyl-3,3′-diylbis-9H-carbazole (mCBP) and B4PyMPM is designed for the blue emitter, iridium(III)bis(4,6-(difluorophenyl)-pyridinato-N,C2’) picolinate (FIrpic), which guarantees a maximum EQE of 26.3 %. The small exciton energy difference between the mCBP:B4PyMPM and Trz-PhCz:B4PyMPM hosts can facilitate efficient energy transfer between the hosts. As a result, these exciplex hosts facilitate energy-efficient WOLEDs with a maximum EQE, power efficiency and current efficiency of 36.9 %, 137.4 lm W<sup>−1</sup> and 106.7 cd A<sup>−1</sup>, respectively, without using any optical out-coupling techniques, which provides inspiration for the future design of efficient OLEDs.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"139 ","pages":"Article 107196"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
White organic light-emitting diode (WOLED) has been recognized as a healthy light source. However, the device performance is still limited by the hosts or emitters. Herein, multiple-exciplex hosts are developed for WOLEDs, in which a novel exciplex host consisting of a thermally activated delayed fluorescent material, triazine–carbazole (Trz-PhCz), and an electron-transport material, 4,6-bis[3,5-(dipyrid-4-yl)phenyl]-2-methylpyrimidine (B4PyMPM), is adopted for green, yellow, orange and red phosphorescent dopants, of which high external quantum efficiencies (EQEs) of 25.0 %, 30.7 %, 32.5 % and 26.2 %, respectively, are achieved. On the other hand, a high-energy exciplex host consisting of 9,9′-biphenyl-3,3′-diylbis-9H-carbazole (mCBP) and B4PyMPM is designed for the blue emitter, iridium(III)bis(4,6-(difluorophenyl)-pyridinato-N,C2’) picolinate (FIrpic), which guarantees a maximum EQE of 26.3 %. The small exciton energy difference between the mCBP:B4PyMPM and Trz-PhCz:B4PyMPM hosts can facilitate efficient energy transfer between the hosts. As a result, these exciplex hosts facilitate energy-efficient WOLEDs with a maximum EQE, power efficiency and current efficiency of 36.9 %, 137.4 lm W−1 and 106.7 cd A−1, respectively, without using any optical out-coupling techniques, which provides inspiration for the future design of efficient OLEDs.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.