What is the impact of discrete memristor on the performance of neural network: A research on discrete memristor-based BP neural network

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-02-01 DOI:10.1016/j.neunet.2025.107213
Yuexi Peng , Maolin Li , Zhijun Li , Minglin Ma , Mengjiao Wang , Shaobo He
{"title":"What is the impact of discrete memristor on the performance of neural network: A research on discrete memristor-based BP neural network","authors":"Yuexi Peng ,&nbsp;Maolin Li ,&nbsp;Zhijun Li ,&nbsp;Minglin Ma ,&nbsp;Mengjiao Wang ,&nbsp;Shaobo He","doi":"10.1016/j.neunet.2025.107213","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial neural networks are receiving increasing attention from researchers. However, with the advent of big data era, artificial neural networks are limited by the Von Neumann architecture, making it difficult to make new breakthroughs in hardware implementation. Discrete-time memristor, emerging as a research focus in recent years, are anticipated to address this challenge effectively. To enrich the theoretical research of memristors in artificial neural networks, this paper studies BP neural networks based on various discrete memristors. Firstly, the concept of discrete memristor and several classical discrete memristor models are introduced. Based on these models, the discrete memristor-based BP neural networks are designed. Finally, these networks are utilized for achieving handwritten digit classification and speech feature classification, respectively. The results show that linear discrete memristors perform better than nonlinear discrete memristors, and a simple linear discrete memristor-based BP neural network has the best performance, reaching 97.40% (handwritten digit classification) and 93.78% (speech feature classification), respectively. In addition, some fundamental issues are also discussed, such as the effects of linear, nonlinear memristors, and initial charges on the performance of neural networks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107213"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000929","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks are receiving increasing attention from researchers. However, with the advent of big data era, artificial neural networks are limited by the Von Neumann architecture, making it difficult to make new breakthroughs in hardware implementation. Discrete-time memristor, emerging as a research focus in recent years, are anticipated to address this challenge effectively. To enrich the theoretical research of memristors in artificial neural networks, this paper studies BP neural networks based on various discrete memristors. Firstly, the concept of discrete memristor and several classical discrete memristor models are introduced. Based on these models, the discrete memristor-based BP neural networks are designed. Finally, these networks are utilized for achieving handwritten digit classification and speech feature classification, respectively. The results show that linear discrete memristors perform better than nonlinear discrete memristors, and a simple linear discrete memristor-based BP neural network has the best performance, reaching 97.40% (handwritten digit classification) and 93.78% (speech feature classification), respectively. In addition, some fundamental issues are also discussed, such as the effects of linear, nonlinear memristors, and initial charges on the performance of neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Editorial Board Editorial Board What is the impact of discrete memristor on the performance of neural network: A research on discrete memristor-based BP neural network SDR-Former: A Siamese Dual-Resolution Transformer for liver lesion classification using 3D multi-phase imaging FxTS-Net: Fixed-time stable learning framework for Neural ODEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1