Chaoyang Luo , Yan Zou , Wanying Li , Nanjing Huang
{"title":"FxTS-Net: Fixed-time stable learning framework for Neural ODEs","authors":"Chaoyang Luo , Yan Zou , Wanying Li , Nanjing Huang","doi":"10.1016/j.neunet.2025.107219","DOIUrl":null,"url":null,"abstract":"<div><div>Neural Ordinary Differential Equations (Neural ODEs), as a novel category of modeling big data methods, cleverly link traditional neural networks and dynamical systems. However, it is challenging to ensure the dynamics system reaches a correctly predicted state within a user-defined fixed time. To address this problem, we propose a new method for training Neural ODEs using fixed-time stability (FxTS) Lyapunov conditions. Our framework, called FxTS-Net, is based on the novel FxTS loss (FxTS-Loss) designed on Lyapunov functions, which aims to encourage convergence to accurate predictions in a user-defined fixed time. We also provide an innovative approach for constructing Lyapunov functions to meet various tasks and network architecture requirements, achieved by leveraging supervised information during training. By developing a more precise time upper bound estimation for bounded non-vanishingly perturbed systems, we demonstrate that minimizing FxTS-Loss not only guarantees FxTS behavior of the dynamics but also input perturbation robustness. For optimizing FxTS-Loss, we also propose a learning algorithm, in which the simulated perturbation sampling method can capture sample points in critical regions to approximate FxTS-Loss. Experimentally, we find that FxTS-Net provides better prediction performance and better robustness under input perturbation.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107219"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802500098X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Neural Ordinary Differential Equations (Neural ODEs), as a novel category of modeling big data methods, cleverly link traditional neural networks and dynamical systems. However, it is challenging to ensure the dynamics system reaches a correctly predicted state within a user-defined fixed time. To address this problem, we propose a new method for training Neural ODEs using fixed-time stability (FxTS) Lyapunov conditions. Our framework, called FxTS-Net, is based on the novel FxTS loss (FxTS-Loss) designed on Lyapunov functions, which aims to encourage convergence to accurate predictions in a user-defined fixed time. We also provide an innovative approach for constructing Lyapunov functions to meet various tasks and network architecture requirements, achieved by leveraging supervised information during training. By developing a more precise time upper bound estimation for bounded non-vanishingly perturbed systems, we demonstrate that minimizing FxTS-Loss not only guarantees FxTS behavior of the dynamics but also input perturbation robustness. For optimizing FxTS-Loss, we also propose a learning algorithm, in which the simulated perturbation sampling method can capture sample points in critical regions to approximate FxTS-Loss. Experimentally, we find that FxTS-Net provides better prediction performance and better robustness under input perturbation.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.