Additive-feature-attribution methods: A review on explainable artificial intelligence for fluid dynamics and heat transfer

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-12-09 DOI:10.1016/j.ijheatfluidflow.2024.109662
Andrés Cremades , Sergio Hoyas , Ricardo Vinuesa
{"title":"Additive-feature-attribution methods: A review on explainable artificial intelligence for fluid dynamics and heat transfer","authors":"Andrés Cremades ,&nbsp;Sergio Hoyas ,&nbsp;Ricardo Vinuesa","doi":"10.1016/j.ijheatfluidflow.2024.109662","DOIUrl":null,"url":null,"abstract":"<div><div>The use of data-driven methods in fluid mechanics has surged dramatically in recent years due to their capacity to adapt to the complex and multi-scale nature of turbulent flows, as well as to detect patterns in large-scale simulations or experimental tests. In order to interpret the relationships generated in the models during the training process, numerical attributions need to be assigned to the input features. One important example are the additive-feature-attribution methods. These explainability methods link the input features with the model prediction, providing an interpretation based on a linear formulation of the models. The Shapley additive explanations (SHAP values) are formulated as the only possible interpretation that offers a unique solution for understanding the model. In this manuscript, the additive-feature-attribution methods are presented, showing four common implementations in the literature: kernel SHAP, tree SHAP, gradient SHAP, and deep SHAP. Then, the main applications of the additive-feature-attribution methods are introduced, dividing them into three main groups: turbulence modeling, fluid-mechanics fundamentals, and applied problems in fluid dynamics and heat transfer. This review shows that explainability techniques, and in particular additive-feature-attribution methods, are crucial for implementing interpretable and physics-compliant deep-learning models in the fluid-mechanics field.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109662"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003874","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of data-driven methods in fluid mechanics has surged dramatically in recent years due to their capacity to adapt to the complex and multi-scale nature of turbulent flows, as well as to detect patterns in large-scale simulations or experimental tests. In order to interpret the relationships generated in the models during the training process, numerical attributions need to be assigned to the input features. One important example are the additive-feature-attribution methods. These explainability methods link the input features with the model prediction, providing an interpretation based on a linear formulation of the models. The Shapley additive explanations (SHAP values) are formulated as the only possible interpretation that offers a unique solution for understanding the model. In this manuscript, the additive-feature-attribution methods are presented, showing four common implementations in the literature: kernel SHAP, tree SHAP, gradient SHAP, and deep SHAP. Then, the main applications of the additive-feature-attribution methods are introduced, dividing them into three main groups: turbulence modeling, fluid-mechanics fundamentals, and applied problems in fluid dynamics and heat transfer. This review shows that explainability techniques, and in particular additive-feature-attribution methods, are crucial for implementing interpretable and physics-compliant deep-learning models in the fluid-mechanics field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Numerical studies on thermophysical process in laser-assisted thermal probe fabrication of nanostructures Viscosity-driven clustering of heated polydispersed particles in subsonic jet flows Control of flow separation from an axisymmetric body using tangentially steady bowing jets Theoretical and numerical studies of heat and humidity transfer in underground ventilation corridor Quasi-one-dimensional mathematical model of the two-dimensional supersonic cavity mean flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1