Pei-Syuan Yang , Yi Liu , Shiue-Cheng Tang , Yu-Wen Tien , Shan-hui Hsu
{"title":"3D bioprinting of multicellular tumor spheroids in photocrosslinkable hyaluronan-gelatin for engineering pancreatic cancer microenvironment","authors":"Pei-Syuan Yang , Yi Liu , Shiue-Cheng Tang , Yu-Wen Tien , Shan-hui Hsu","doi":"10.1016/j.bprint.2024.e00374","DOIUrl":null,"url":null,"abstract":"<div><div>3D bioprinting can be utilized to fabricate cancer-like tissue that models complex interactions within the cancer microenvironment. In human pancreatic ductal adenocarcinoma (PDAC), these interactions involve the extracellular matrix (ECM), cancer cells, and pancreatic stellate cells. Hyaluronan (HA) is a major component of ECM supporting tumor progression and chemoresistance in PDAC. In the current study, an <em>in vitro</em> PDAC-like tissue platform was developed by embedding multicellular pancreatic tumor-like spheroids within a novel 3D bioprinting HA-gelatin photocrosslinked hydrogel (GHP). This optimized GHP bioink (7 wt% gelatin and 0.2 wt% phenolic HA) achieved a modulus (∼5.46 kPa) closely resembling that of clinical PDAC tissue, with a dense and uniform structure superior to gelatin-only hydrogel (GN). The bioprinted 3D tumor-like spheroids within GHP exhibited distinct invasive and metastatic behavior, along with up-regulated expression of epithelial-mesenchymal transition (EMT) markers. Furthermore, gene expression analysis also revealed a ∼290-fold increase in CD44 gene and a 7.3-fold rise in S100A9 (a novel pancreatic cancer biomarker for early diagnosis). These tumor-like spheroids within 3D-bioprinted GHP constructs further demonstrated substantial chemoresistance, maintaining remarkable 98.5 % viability after 48 h of exposure to a Gemcitabine and Abraxane combination, in contrast to significantly lower resistance observed in spheroids alone or co-cultured monolayers. An in-depth investigation of HA distribution within the 3D-bioprinted PDAC-like construct revealed a pattern consistent with clinical PDAC, indicating enhanced malignancy and potential tumor reprogramming. This 3D-bioprinted PDAC model holds significant potential for advancing pancreatic cancer research and preclinical drug testing.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"44 ","pages":"Article e00374"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
3D bioprinting can be utilized to fabricate cancer-like tissue that models complex interactions within the cancer microenvironment. In human pancreatic ductal adenocarcinoma (PDAC), these interactions involve the extracellular matrix (ECM), cancer cells, and pancreatic stellate cells. Hyaluronan (HA) is a major component of ECM supporting tumor progression and chemoresistance in PDAC. In the current study, an in vitro PDAC-like tissue platform was developed by embedding multicellular pancreatic tumor-like spheroids within a novel 3D bioprinting HA-gelatin photocrosslinked hydrogel (GHP). This optimized GHP bioink (7 wt% gelatin and 0.2 wt% phenolic HA) achieved a modulus (∼5.46 kPa) closely resembling that of clinical PDAC tissue, with a dense and uniform structure superior to gelatin-only hydrogel (GN). The bioprinted 3D tumor-like spheroids within GHP exhibited distinct invasive and metastatic behavior, along with up-regulated expression of epithelial-mesenchymal transition (EMT) markers. Furthermore, gene expression analysis also revealed a ∼290-fold increase in CD44 gene and a 7.3-fold rise in S100A9 (a novel pancreatic cancer biomarker for early diagnosis). These tumor-like spheroids within 3D-bioprinted GHP constructs further demonstrated substantial chemoresistance, maintaining remarkable 98.5 % viability after 48 h of exposure to a Gemcitabine and Abraxane combination, in contrast to significantly lower resistance observed in spheroids alone or co-cultured monolayers. An in-depth investigation of HA distribution within the 3D-bioprinted PDAC-like construct revealed a pattern consistent with clinical PDAC, indicating enhanced malignancy and potential tumor reprogramming. This 3D-bioprinted PDAC model holds significant potential for advancing pancreatic cancer research and preclinical drug testing.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.