{"title":"Optimization of the perovskite cell in a bifacial two-terminal perovskite/silicon tandem module","authors":"Youri Blom, Malte Ruben Vogt, Olindo Isabella, Rudi Santbergen","doi":"10.1016/j.solmat.2025.113431","DOIUrl":null,"url":null,"abstract":"<div><div>Bifacial perovskite/silicon solar cells can combine the advantages of tandem technology (high efficiencies) and bifacial modules (additional received irradiance from the rear) to increase the energy yield of photovoltaic (PV) systems further. In literature, it has already been shown that for two-terminal tandems this would require a lower bandgap energy (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>) for the perovskite cell, as the rear irradiance increases the current in the bottom cell creating a current mismatch, if this is not considered during optimization. This work expands on bifacial two-terminal tandem optimization by considering aspects not included before. Besides the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>, the thickness (<span><math><mi>d</mi></math></span>) of the perovskite is also optimized, as this also affects the current matching. Additionally, this work studies the trends in different energy losses of the PV module to better understand what affects the optimal perovskite cell. Our simulations show that the optimal <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is 1.61–1.65 eV and the optimal <span><math><mi>d</mi></math></span> is 650–750 nm, which agrees with the observations in literature. The optimal <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and <span><math><mi>d</mi></math></span> are mostly a trade-off between mismatch and thermalization losses, meaning that the mismatch losses should not be fully minimized. Additionally, the irradiance from the rear side is converted less efficiently than the front side irradiance due to larger thermalization and reflection losses. Therefore, the energy yield of bifacial tandem modules, compared to monofacial tandem ones, only increases for large ground albedo. Finally, our results show that the bifacial tandems have over a 25% gain in energy yield compared to bifacial single junction modules and up to 5% gain compared to monofacial tandem modules.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"282 ","pages":"Article 113431"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825000327","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Bifacial perovskite/silicon solar cells can combine the advantages of tandem technology (high efficiencies) and bifacial modules (additional received irradiance from the rear) to increase the energy yield of photovoltaic (PV) systems further. In literature, it has already been shown that for two-terminal tandems this would require a lower bandgap energy () for the perovskite cell, as the rear irradiance increases the current in the bottom cell creating a current mismatch, if this is not considered during optimization. This work expands on bifacial two-terminal tandem optimization by considering aspects not included before. Besides the , the thickness () of the perovskite is also optimized, as this also affects the current matching. Additionally, this work studies the trends in different energy losses of the PV module to better understand what affects the optimal perovskite cell. Our simulations show that the optimal is 1.61–1.65 eV and the optimal is 650–750 nm, which agrees with the observations in literature. The optimal and are mostly a trade-off between mismatch and thermalization losses, meaning that the mismatch losses should not be fully minimized. Additionally, the irradiance from the rear side is converted less efficiently than the front side irradiance due to larger thermalization and reflection losses. Therefore, the energy yield of bifacial tandem modules, compared to monofacial tandem ones, only increases for large ground albedo. Finally, our results show that the bifacial tandems have over a 25% gain in energy yield compared to bifacial single junction modules and up to 5% gain compared to monofacial tandem modules.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.