CHoKI-based MPC for blood glucose regulation in Artificial Pancreas

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2025-01-01 DOI:10.1016/j.ifacsc.2024.100294
Beatrice Sonzogni , José María Manzano , Marco Polver , Fabio Previdi , Antonio Ferramosca
{"title":"CHoKI-based MPC for blood glucose regulation in Artificial Pancreas","authors":"Beatrice Sonzogni ,&nbsp;José María Manzano ,&nbsp;Marco Polver ,&nbsp;Fabio Previdi ,&nbsp;Antonio Ferramosca","doi":"10.1016/j.ifacsc.2024.100294","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a Model Predictive Control (MPC) for the artificial pancreas, which is able to autonomously manage basal insulin injections in type 1 diabetic patients. Specifically, the MPC goal is to maintain the patients’ blood glucose level inside the safe range of 70-180 mg/dL, acting on the insulin amount and respecting all the imposed constraints, taking into consideration also the Insulin On Board (IOB), to avoid excess of insulin infusion. MPC uses a model to make predictions of the system behavior. In this work, due to the complexity of the diabetes disease that complicates the identification of a general physiological model, a data-driven learning method is employed instead. The Componentwise Hölder Kinky Inference (CHoKI) method is adopted, to have a customized controller for each patient. For the data collection phase and also to test the proposed controller, the virtual patients of the FDA-accepted UVA/Padova simulator are exploited. The MPC is also tested on simulations with variability of the insulin sensitivity and with physical activity sessions. The final results are satisfying since the proposed controller is conservative and reduces the time in hypoglycemia (which is more dangerous) if compared to the outcomes obtained without the IOB constraints.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"31 ","pages":"Article 100294"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a Model Predictive Control (MPC) for the artificial pancreas, which is able to autonomously manage basal insulin injections in type 1 diabetic patients. Specifically, the MPC goal is to maintain the patients’ blood glucose level inside the safe range of 70-180 mg/dL, acting on the insulin amount and respecting all the imposed constraints, taking into consideration also the Insulin On Board (IOB), to avoid excess of insulin infusion. MPC uses a model to make predictions of the system behavior. In this work, due to the complexity of the diabetes disease that complicates the identification of a general physiological model, a data-driven learning method is employed instead. The Componentwise Hölder Kinky Inference (CHoKI) method is adopted, to have a customized controller for each patient. For the data collection phase and also to test the proposed controller, the virtual patients of the FDA-accepted UVA/Padova simulator are exploited. The MPC is also tested on simulations with variability of the insulin sensitivity and with physical activity sessions. The final results are satisfying since the proposed controller is conservative and reduces the time in hypoglycemia (which is more dangerous) if compared to the outcomes obtained without the IOB constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
Local vs regional neural air pollution forecasting models A top-down approach for climate change mitigation strategies A bilevel optimization approach for Balancing Markets with electric vehicle aggregators and smart charging New approach of series-PID controller design based on modern control theory: Simulations and real-time validation A Control-Equivalent-Turbulence-Input estimation method for unmanned helicopters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1