Adaptive chaos control: A novel continuous-time approach for enhanced stability

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2024-12-10 DOI:10.1016/j.ifacsc.2024.100292
Muhammad Shafiq , Israr Ahmad
{"title":"Adaptive chaos control: A novel continuous-time approach for enhanced stability","authors":"Muhammad Shafiq ,&nbsp;Israr Ahmad","doi":"10.1016/j.ifacsc.2024.100292","DOIUrl":null,"url":null,"abstract":"<div><div>Stabilizing chaotic systems with robustness, speed, and smoothness remains a significant challenge due to issues like chattering and slow convergence associated with traditional control methods. This paper proposes a novel continuous-time adaptive robust control (CTARC) scheme to overcome these limitations and enhance the stabilization of uncertain chaotic systems. CTARC employs smooth control functions; specifically hyperbolic secant and inverse hyperbolic sine functions to eliminate chattering and achieve faster, more precise convergence to equilibrium. Unlike conventional controllers that simplify system dynamics by removing nonlinearities, this approach preserves them, thereby improving robustness against time-varying disturbances and model uncertainties. A Lyapunov-based stability analysis rigorously establishes the asymptotic stability of the proposed control strategy. Numerical simulations on the Shimizu–Morioka​ chaotic system and a memristor-based hyperchaotic system validate CTARC’s superiority in convergence speed, energy efficiency, and stability compared to existing adaptive methods. By reducing transient effects like overshoots and oscillations, the proposed scheme ensures smoother transitions and minimizes energy consumption, addressing critical limitations of traditional methods. These results highlight CTARC’s potential as a robust and energy-efficient solution for chaos stabilization and provide a foundation for future developments in complex system control.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"31 ","pages":"Article 100292"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Stabilizing chaotic systems with robustness, speed, and smoothness remains a significant challenge due to issues like chattering and slow convergence associated with traditional control methods. This paper proposes a novel continuous-time adaptive robust control (CTARC) scheme to overcome these limitations and enhance the stabilization of uncertain chaotic systems. CTARC employs smooth control functions; specifically hyperbolic secant and inverse hyperbolic sine functions to eliminate chattering and achieve faster, more precise convergence to equilibrium. Unlike conventional controllers that simplify system dynamics by removing nonlinearities, this approach preserves them, thereby improving robustness against time-varying disturbances and model uncertainties. A Lyapunov-based stability analysis rigorously establishes the asymptotic stability of the proposed control strategy. Numerical simulations on the Shimizu–Morioka​ chaotic system and a memristor-based hyperchaotic system validate CTARC’s superiority in convergence speed, energy efficiency, and stability compared to existing adaptive methods. By reducing transient effects like overshoots and oscillations, the proposed scheme ensures smoother transitions and minimizes energy consumption, addressing critical limitations of traditional methods. These results highlight CTARC’s potential as a robust and energy-efficient solution for chaos stabilization and provide a foundation for future developments in complex system control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
Learning optimal safety certificates for unknown nonlinear control systems A sparse approach to transfer function estimation via Least Absolute Shrinkage and Selection Operator Local vs regional neural air pollution forecasting models A top-down approach for climate change mitigation strategies A bilevel optimization approach for Balancing Markets with electric vehicle aggregators and smart charging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1