{"title":"Honeycomb BiFeO3 catalysts harvest mechanical energy from ultrasonic vibrations for efficient piezoelectric-catalyzed degradation of antibiotics","authors":"Jun Teng , Du Tao , Feng Li , Taohai Li","doi":"10.1016/j.colcom.2024.100813","DOIUrl":null,"url":null,"abstract":"<div><div>Piezocatalysis has attracted much attention for its efficient performance in removing pharmaceuticals and dyes from wastewater. In this work, the piezoelectric system was applied by environmental-benign BiFeO<sub>3</sub> catalysis for the removal of antibiotics in the water. The irregular honeycomb-like BiFeO<sub>3</sub> was prepared through a simple co-precipitation route with composite precipitants. The results demonstrated that BiFeO<sub>3</sub> exhibited excellent piezoelectric catalytic degradation performance for metronidazole under ultrasonic vibration. The effects of catalyst dosage, initial metronidazole concentration, solution pH, and ultrasonic power on piezoelectric catalytic efficiency were systematically investigated. It was found that the highest piezoelectric catalytic degradation efficiency of metronidazole was 98.87 %. The catalyst stability of the catalyst showed that it had excellent piezoelectric catalytic degradation Finally, the degradation efficiency of metronidazole was only reduced by 4 % through four cycles, which demonstrated the good stability and reusability of BiFeO<sub>3</sub>.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100813"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038224000487","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Piezocatalysis has attracted much attention for its efficient performance in removing pharmaceuticals and dyes from wastewater. In this work, the piezoelectric system was applied by environmental-benign BiFeO3 catalysis for the removal of antibiotics in the water. The irregular honeycomb-like BiFeO3 was prepared through a simple co-precipitation route with composite precipitants. The results demonstrated that BiFeO3 exhibited excellent piezoelectric catalytic degradation performance for metronidazole under ultrasonic vibration. The effects of catalyst dosage, initial metronidazole concentration, solution pH, and ultrasonic power on piezoelectric catalytic efficiency were systematically investigated. It was found that the highest piezoelectric catalytic degradation efficiency of metronidazole was 98.87 %. The catalyst stability of the catalyst showed that it had excellent piezoelectric catalytic degradation Finally, the degradation efficiency of metronidazole was only reduced by 4 % through four cycles, which demonstrated the good stability and reusability of BiFeO3.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.