Combination treatment with rapamycin and glucocorticoid protects the death of mesostriatal dopaminergic neurons in animal model of Parkinson's disease

IF 3.3 3区 心理学 Q1 BEHAVIORAL SCIENCES Pharmacology Biochemistry and Behavior Pub Date : 2025-02-03 DOI:10.1016/j.pbb.2025.173966
Kina Lee , Hee Jeong Kim , Jeong Eun Kim , K.C. Elina , Sangjune Kim , Young Seok Park , Hyong Kyu Kim
{"title":"Combination treatment with rapamycin and glucocorticoid protects the death of mesostriatal dopaminergic neurons in animal model of Parkinson's disease","authors":"Kina Lee ,&nbsp;Hee Jeong Kim ,&nbsp;Jeong Eun Kim ,&nbsp;K.C. Elina ,&nbsp;Sangjune Kim ,&nbsp;Young Seok Park ,&nbsp;Hyong Kyu Kim","doi":"10.1016/j.pbb.2025.173966","DOIUrl":null,"url":null,"abstract":"<div><div>Glucocorticoids have been used to treat inflammatory diseases because of their potent anti-inflammatory and immunosuppressive actions. However, chronic use of high levels of glucocorticoids causes several adverse effects, limiting their clinical utility. Here, we explored the therapeutic potential of a combination treatment involving reduced concentrations of rapamycin, an autophagy activator and immunosuppressant, and glucocorticoids in an animal model of Parkinson's disease (PD). <em>In vitro</em> experiments with the SH-SY5Y cell line revealed that 10 μM rapamycin significantly increased the survival rate of cells treated with 6-hydroxydopamine to induce cell death, while both dexamethasone and prednisone at 50 μM exhibited an evident increase in survival rates. The combination treatment with reduced concentrations (rapamycin: 5 μM, dexamethasone: 25 μM) showed a more effective recovery in survival than singular treatments with high concentrations of rapamycin, prednisone, or dexamethasone. Propidium iodide–staining confirmed the efficacy of the combination treatment. This treatment did not significantly alter forkhead box O3a (FOXO3a)–triggered apoptosis and autophagic flux but upregulated the expression of the anti-apoptotic protein B-cell lymphoma 2, while B-cell lymphoma–extra-large showed no significant change. <em>In vivo</em> experiments using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)–induced PD animal model revealed that the combination treatment effectively mitigated defects in motor function. The combination treatment completely blocked the loss of tyrosine hydroxylase (TH)–positive neurons in the substantia nigra pars compacta and partially prevented the reduction of TH-positive fibers in the striatum caused by the MPTP treatment. It also reduced the microglial levels caused by the MPTP treatment. Although not significant, it demonstrated an increase in survival rates of MPTP-induced PD model mice. In conclusion, the combination treatment with reduced concentrations of rapamycin and glucocorticoids may serve as potential therapy for PD, albeit further research and clinical trials are warranted to validate its efficacy and safety.</div></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"248 ","pages":"Article 173966"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305725000139","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glucocorticoids have been used to treat inflammatory diseases because of their potent anti-inflammatory and immunosuppressive actions. However, chronic use of high levels of glucocorticoids causes several adverse effects, limiting their clinical utility. Here, we explored the therapeutic potential of a combination treatment involving reduced concentrations of rapamycin, an autophagy activator and immunosuppressant, and glucocorticoids in an animal model of Parkinson's disease (PD). In vitro experiments with the SH-SY5Y cell line revealed that 10 μM rapamycin significantly increased the survival rate of cells treated with 6-hydroxydopamine to induce cell death, while both dexamethasone and prednisone at 50 μM exhibited an evident increase in survival rates. The combination treatment with reduced concentrations (rapamycin: 5 μM, dexamethasone: 25 μM) showed a more effective recovery in survival than singular treatments with high concentrations of rapamycin, prednisone, or dexamethasone. Propidium iodide–staining confirmed the efficacy of the combination treatment. This treatment did not significantly alter forkhead box O3a (FOXO3a)–triggered apoptosis and autophagic flux but upregulated the expression of the anti-apoptotic protein B-cell lymphoma 2, while B-cell lymphoma–extra-large showed no significant change. In vivo experiments using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)–induced PD animal model revealed that the combination treatment effectively mitigated defects in motor function. The combination treatment completely blocked the loss of tyrosine hydroxylase (TH)–positive neurons in the substantia nigra pars compacta and partially prevented the reduction of TH-positive fibers in the striatum caused by the MPTP treatment. It also reduced the microglial levels caused by the MPTP treatment. Although not significant, it demonstrated an increase in survival rates of MPTP-induced PD model mice. In conclusion, the combination treatment with reduced concentrations of rapamycin and glucocorticoids may serve as potential therapy for PD, albeit further research and clinical trials are warranted to validate its efficacy and safety.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
2.80%
发文量
122
审稿时长
38 days
期刊介绍: Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.
期刊最新文献
Combination treatment with rapamycin and glucocorticoid protects the death of mesostriatal dopaminergic neurons in animal model of Parkinson's disease Editorial Board Maternal ingestion of cannabidiol (CBD) in mice leads to sex-dependent changes in memory, anxiety, and metabolism in the adult offspring, and causes a decrease in survival to weaning age Elucidating the alcohol-sleep-hangover relationship in college students using a daily diary approach GW117 induces anxiolytic effects by improving hippocampal functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1