{"title":"An insight into bactericidal, fungicidal, larvicidal and molecular docking studies of ruthenium(III) Schiff base complexes","authors":"Sindhu Yesodharan , Bini Babu Sujatha , Pooja Parvathy Rajan , Sujamol Mathunny Susamma , Athira Chempakam Janardhanan , Praveen Kumar , Selwin Joseyphus Raphael , Mohanan Kochukittan","doi":"10.1016/j.cdc.2025.101179","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the synthesis, molecular modelling, antibacterial, antifungal, larvicidal potential, and molecular docking studies of Ru(III) complexes derived from the Schiff bases, with six amino acids (glycine/α-alanine/phenylalanine/leucine/histidine/tryptophan) and 2‑hydroxy-1-naphthaldehyde. The chelation of the complexes has been explored using FT-IR, UV–Vis., and NMR spectral data. Furthermore, electrochemical, and magnetic studies favoured complexes' redox and coordination behaviour. The molar conductance values proved the non-electrolytic nature of the octahedral Ru(III) complexes. Comprehensive biological studies indicate that the Ru(III) complexes exhibit significant antibacterial activity against the gram-positive bacterium, <em>Staphylococcus aureus.</em> The complexes also exhibited enhanced larvicidal activity against <em>Culex quinquefasciatus</em> mosquito larvae. Correlation analysis of the larvicidal potentials has revealed the impact of the structural features on activity. The 3-D modelling of a few selected ligands and their complexes was also investigated. Molecular docking studies on the active site of different proteins also provided insights into the activities of the complexes. The results presented satisfactory -CDOCKER values for [Ru(III)-(NAA<em><sup>4</sup></em>)Cl(PPh<sub>3</sub>)<sub>2</sub>] and [Ru(III)-(NAA<em><sup>5</sup></em>)Cl(PPh<sub>3</sub>)<sub>2</sub>] suggesting a good binding affinity between the protein and the complexes.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"55 ","pages":"Article 101179"},"PeriodicalIF":2.2180,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Data Collections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405830025000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the synthesis, molecular modelling, antibacterial, antifungal, larvicidal potential, and molecular docking studies of Ru(III) complexes derived from the Schiff bases, with six amino acids (glycine/α-alanine/phenylalanine/leucine/histidine/tryptophan) and 2‑hydroxy-1-naphthaldehyde. The chelation of the complexes has been explored using FT-IR, UV–Vis., and NMR spectral data. Furthermore, electrochemical, and magnetic studies favoured complexes' redox and coordination behaviour. The molar conductance values proved the non-electrolytic nature of the octahedral Ru(III) complexes. Comprehensive biological studies indicate that the Ru(III) complexes exhibit significant antibacterial activity against the gram-positive bacterium, Staphylococcus aureus. The complexes also exhibited enhanced larvicidal activity against Culex quinquefasciatus mosquito larvae. Correlation analysis of the larvicidal potentials has revealed the impact of the structural features on activity. The 3-D modelling of a few selected ligands and their complexes was also investigated. Molecular docking studies on the active site of different proteins also provided insights into the activities of the complexes. The results presented satisfactory -CDOCKER values for [Ru(III)-(NAA4)Cl(PPh3)2] and [Ru(III)-(NAA5)Cl(PPh3)2] suggesting a good binding affinity between the protein and the complexes.
期刊介绍:
Chemical Data Collections (CDC) provides a publication outlet for the increasing need to make research material and data easy to share and re-use. Publication of research data with CDC will allow scientists to: -Make their data easy to find and access -Benefit from the fast publication process -Contribute to proper data citation and attribution -Publish their intermediate and null/negative results -Receive recognition for the work that does not fit traditional article format. The research data will be published as ''data articles'' that support fast and easy submission and quick peer-review processes. Data articles introduced by CDC are short self-contained publications about research materials and data. They must provide the scientific context of the described work and contain the following elements: a title, list of authors (plus affiliations), abstract, keywords, graphical abstract, metadata table, main text and at least three references. The journal welcomes submissions focusing on (but not limited to) the following categories of research output: spectral data, syntheses, crystallographic data, computational simulations, molecular dynamics and models, physicochemical data, etc.