Junwei Yang , Lingting Meng , Xiangjun Wang , Hua Yang
{"title":"Research on data assimilation approach of wind turbine airfoils in stall conditions","authors":"Junwei Yang , Lingting Meng , Xiangjun Wang , Hua Yang","doi":"10.1016/j.renene.2024.122071","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to analyze the applicability of the turbulence model constants obtained through data assimilation on various airfoils in stall conditions, thereby offering the potential for computational resource savings. Through the wind tunnel experiments and published test data at Reynolds numbers ranging from the order of 10<sup>5</sup> to 10<sup>6</sup>, the ensemble Kalman filter method was proposed to optimize the constants of the SA (Spalart-Allmaras) model, and its efficacy was validated. The assimilated constants obtained from YA-21 and S809 airfoils were applied separately to other airfoils with similar separation degrees for comparative analysis of their assimilation effects. Based on this, the influence of each model constant on numerical simulation was explored, and the pressure distributions were compared before and after assimilation as well as on other airfoils. Additionally, the impact of variations in airfoil thickness and Reynolds number on assimilated results was investigated. The results suggest that the constants that impact assimilation outcomes appreciably under stall conditions pertain to production and diffusion terms. When the Reynolds numbers are on the order of 10<sup>5</sup>, assimilated constants derived from the 21 % thickness airfoil exhibited optimization effects on the NACA4415 and S809 airfoil, providing a more accurate depiction of separated flow over an airfoil than the original constants conditions. The optimization effect persisted when the Reynolds number reached the order of 10<sup>6</sup>. As the primary factor in the production term, <em>C</em><sub>b1</sub> became sensitive to changes in Reynolds number exceeding other constants. However, the applicability of thick airfoils is slightly degenerated. Thicker airfoils are more susceptible to changes in the constants of the production and diffusion terms, which makes the assimilated constants need to be applied with caution. These findings demonstrate the feasibility of the mentioned approach, suggesting that assimilated constants from a medium-thickness airfoil can be partially used to replace the self-assimilated constants of other airfoils.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"239 ","pages":"Article 122071"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124021396","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to analyze the applicability of the turbulence model constants obtained through data assimilation on various airfoils in stall conditions, thereby offering the potential for computational resource savings. Through the wind tunnel experiments and published test data at Reynolds numbers ranging from the order of 105 to 106, the ensemble Kalman filter method was proposed to optimize the constants of the SA (Spalart-Allmaras) model, and its efficacy was validated. The assimilated constants obtained from YA-21 and S809 airfoils were applied separately to other airfoils with similar separation degrees for comparative analysis of their assimilation effects. Based on this, the influence of each model constant on numerical simulation was explored, and the pressure distributions were compared before and after assimilation as well as on other airfoils. Additionally, the impact of variations in airfoil thickness and Reynolds number on assimilated results was investigated. The results suggest that the constants that impact assimilation outcomes appreciably under stall conditions pertain to production and diffusion terms. When the Reynolds numbers are on the order of 105, assimilated constants derived from the 21 % thickness airfoil exhibited optimization effects on the NACA4415 and S809 airfoil, providing a more accurate depiction of separated flow over an airfoil than the original constants conditions. The optimization effect persisted when the Reynolds number reached the order of 106. As the primary factor in the production term, Cb1 became sensitive to changes in Reynolds number exceeding other constants. However, the applicability of thick airfoils is slightly degenerated. Thicker airfoils are more susceptible to changes in the constants of the production and diffusion terms, which makes the assimilated constants need to be applied with caution. These findings demonstrate the feasibility of the mentioned approach, suggesting that assimilated constants from a medium-thickness airfoil can be partially used to replace the self-assimilated constants of other airfoils.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.