Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation

Shivani Mahra , Sneha Tripathi , Kavita Tiwari , Samarth Sharma , Sobhitha Mathew , Vivek Kumar , Shivesh Sharma
{"title":"Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation","authors":"Shivani Mahra ,&nbsp;Sneha Tripathi ,&nbsp;Kavita Tiwari ,&nbsp;Samarth Sharma ,&nbsp;Sobhitha Mathew ,&nbsp;Vivek Kumar ,&nbsp;Shivesh Sharma","doi":"10.1016/j.plana.2024.100124","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of sustainable agricultural system has ignited a quest for innovative approaches to enhance crop productivity while ensuring ecological equilibrium. Plants, being sensitive to alterations in their surroundings, must evolve complex defense systems against these changes, particularly in the case of abiotic stress, which would otherwise diminish plant productivity. Nano-encapsulation and seed nanopriming are two avant- garde approaches that have the potential to alter the sustainability of agroecosystems. Seed nanopriming involves the strategic application of nanoparticles (NPs) to seeds for crop improvement. Applying NPs through seed priming is a novel and economical method that enhances germination of seeds and plant growth by stimulating physiological processes in plants &amp; offering resilience towards diverse stressors. While on the other hand smart agriculture has reduced reliance on conventional agrochemicals, nano-encapsulation of bioactive compounds offers a complementary approach by providing a long-lasting and controlled release of essential agrochemicals or compounds by using different types of nanocarrier. This review provides insights into recent developments in agriculture, focusing on the opportunities that are associated with the use of nanotechnology for seed nanopriming. In addition, it highlights the materials and technologies that are employed in encapsulating the bioactive compound with NPs. In addition to offering an in-depth review of the benefits and drawbacks of each technique, this study explores the potential of nano-encapsulation and nanopriming to increase agricultural output. It goes into more detail on the technologies' economic worth, emphasizing how they might raise crop yields and profitability. The paper addresses both the potential risks, such as toxicity and long-term consequences on ecosystems, as well as the environmental benefits to present a fair picture of the use of nanotechnology in agriculture.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100124"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111124000676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of sustainable agricultural system has ignited a quest for innovative approaches to enhance crop productivity while ensuring ecological equilibrium. Plants, being sensitive to alterations in their surroundings, must evolve complex defense systems against these changes, particularly in the case of abiotic stress, which would otherwise diminish plant productivity. Nano-encapsulation and seed nanopriming are two avant- garde approaches that have the potential to alter the sustainability of agroecosystems. Seed nanopriming involves the strategic application of nanoparticles (NPs) to seeds for crop improvement. Applying NPs through seed priming is a novel and economical method that enhances germination of seeds and plant growth by stimulating physiological processes in plants & offering resilience towards diverse stressors. While on the other hand smart agriculture has reduced reliance on conventional agrochemicals, nano-encapsulation of bioactive compounds offers a complementary approach by providing a long-lasting and controlled release of essential agrochemicals or compounds by using different types of nanocarrier. This review provides insights into recent developments in agriculture, focusing on the opportunities that are associated with the use of nanotechnology for seed nanopriming. In addition, it highlights the materials and technologies that are employed in encapsulating the bioactive compound with NPs. In addition to offering an in-depth review of the benefits and drawbacks of each technique, this study explores the potential of nano-encapsulation and nanopriming to increase agricultural output. It goes into more detail on the technologies' economic worth, emphasizing how they might raise crop yields and profitability. The paper addresses both the potential risks, such as toxicity and long-term consequences on ecosystems, as well as the environmental benefits to present a fair picture of the use of nanotechnology in agriculture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Foliar nano Zn-Mo and chlorine dioxide affects use efficiency and distribution of macronutrients in green bean plants Protective layer β-cyclodextrin within peanut (Arachis hypogaea L.) shells’ nanoparticles enhances intracellular stable fluorescence for bioimaging applications: An in vitro and in silico study Biogenic CuO nanoparticles from Camellia sinensis and Pimpinella anisum plant extracts and their role as antimicrobial agents Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation Relative performance of granulated and nano urea on productivity and nitrogen use efficiency of wheat–rice sequence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1