Bio-inspired facile synthesis of CeO2-TiO2 nanocomposites using calyx leaves extract of Physalis peruviana fruits and their biological assessments: Antibacterial and antioxidant activity

Bhaskar Dwivedi , Diksha Bhardwaj , Praveen Kumar Atal , Deepika Choudhary
{"title":"Bio-inspired facile synthesis of CeO2-TiO2 nanocomposites using calyx leaves extract of Physalis peruviana fruits and their biological assessments: Antibacterial and antioxidant activity","authors":"Bhaskar Dwivedi ,&nbsp;Diksha Bhardwaj ,&nbsp;Praveen Kumar Atal ,&nbsp;Deepika Choudhary","doi":"10.1016/j.plana.2024.100130","DOIUrl":null,"url":null,"abstract":"<div><div>Green synthesis has emerged as a transformative approach in nanotechnology, driven by its environmentally friendly, safe, and sustainable principles. In this study, we present a bio-inspired method for the synthesis of CeO₂-TiO₂ nanocomposites (NCs) using phytochemicals extracted from the outer calyx leaves of <em>Physalis peruviana</em> fruits, under ultrasound sonication. This eco-friendly technique not only eliminates the need for hazardous chemicals but also capitalizes on the natural reducing and capping properties of biowaste. The synthesized NCs were thoroughly characterized using fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Their antibacterial activity was evaluated against various Gram-positive and Gram-negative bacteria, and their antioxidant potential was also assessed. This work highlights the remarkable role of phytochemicals from fruit calyx leaves as bio-templates, facilitating the sustainable production of CeO₂-TiO₂ NCs. The ultrasound-assisted synthesis provides a rapid, energy-efficient, and scalable process for nanocomposite fabrication, demonstrating excellent biocompatibility, uniformity, and stability. Furthermore, the approach not only offers a solution to the challenge of hazardous chemical use in nanoparticle (NPs) synthesis but also contributes to waste management by valorizing agricultural by-products. Our findings underscore the promising applications of green-synthesized CeO₂-TiO₂ NCs in the biomedical and pharmaceutical industries, paving the way for future advancements in eco-friendly nanotechnology.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100130"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111124000731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Green synthesis has emerged as a transformative approach in nanotechnology, driven by its environmentally friendly, safe, and sustainable principles. In this study, we present a bio-inspired method for the synthesis of CeO₂-TiO₂ nanocomposites (NCs) using phytochemicals extracted from the outer calyx leaves of Physalis peruviana fruits, under ultrasound sonication. This eco-friendly technique not only eliminates the need for hazardous chemicals but also capitalizes on the natural reducing and capping properties of biowaste. The synthesized NCs were thoroughly characterized using fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Their antibacterial activity was evaluated against various Gram-positive and Gram-negative bacteria, and their antioxidant potential was also assessed. This work highlights the remarkable role of phytochemicals from fruit calyx leaves as bio-templates, facilitating the sustainable production of CeO₂-TiO₂ NCs. The ultrasound-assisted synthesis provides a rapid, energy-efficient, and scalable process for nanocomposite fabrication, demonstrating excellent biocompatibility, uniformity, and stability. Furthermore, the approach not only offers a solution to the challenge of hazardous chemical use in nanoparticle (NPs) synthesis but also contributes to waste management by valorizing agricultural by-products. Our findings underscore the promising applications of green-synthesized CeO₂-TiO₂ NCs in the biomedical and pharmaceutical industries, paving the way for future advancements in eco-friendly nanotechnology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Foliar nano Zn-Mo and chlorine dioxide affects use efficiency and distribution of macronutrients in green bean plants Protective layer β-cyclodextrin within peanut (Arachis hypogaea L.) shells’ nanoparticles enhances intracellular stable fluorescence for bioimaging applications: An in vitro and in silico study Biogenic CuO nanoparticles from Camellia sinensis and Pimpinella anisum plant extracts and their role as antimicrobial agents Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation Relative performance of granulated and nano urea on productivity and nitrogen use efficiency of wheat–rice sequence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1