Hybrid machine learning-based 3-dimensional UAV node localization for UAV-assisted wireless networks

Workeneh Geleta Negassa, Demissie J. Gelmecha, Ram Sewak Singh, Davinder Singh Rathee
{"title":"Hybrid machine learning-based 3-dimensional UAV node localization for UAV-assisted wireless networks","authors":"Workeneh Geleta Negassa,&nbsp;Demissie J. Gelmecha,&nbsp;Ram Sewak Singh,&nbsp;Davinder Singh Rathee","doi":"10.1016/j.cogr.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a hybrid machine-learning framework for optimizing 3-Dimensional (3D) Unmanned Aerial Vehicles (UAV) node localization and resource distribution in UAV-assisted THz 6G networks to ensure efficient coverage in dynamic, high-density environments. The proposed model efficiently managed interference, adapted to UAV mobility, and ensured optimal throughput by dynamically optimizing UAV trajectories. The hybrid framework combined the strengths of Graph Neural Networks (GNN) for feature aggregation, Deep Neural Networks (DNN) for efficient resource allocation, and Double Deep Q-Networks (DDQN) for distributed decision-making. Simulation results demonstrated that the proposed model outperformed traditional machine learning models, significantly improving energy efficiency, latency, and throughput. The hybrid model achieved an optimized energy efficiency of 90 Tbps/J, reduced latency to 0.0105 ms, and delivered a network throughput of approximately 96 Tbps. The model adapts to varying link densities, maintaining stable performance even in high-density scenarios. These findings underscore the framework's potential to address key challenges in UAV-assisted 6G networks, paving the way for scalable and efficient communication in next-generation wireless systems.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 61-76"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a hybrid machine-learning framework for optimizing 3-Dimensional (3D) Unmanned Aerial Vehicles (UAV) node localization and resource distribution in UAV-assisted THz 6G networks to ensure efficient coverage in dynamic, high-density environments. The proposed model efficiently managed interference, adapted to UAV mobility, and ensured optimal throughput by dynamically optimizing UAV trajectories. The hybrid framework combined the strengths of Graph Neural Networks (GNN) for feature aggregation, Deep Neural Networks (DNN) for efficient resource allocation, and Double Deep Q-Networks (DDQN) for distributed decision-making. Simulation results demonstrated that the proposed model outperformed traditional machine learning models, significantly improving energy efficiency, latency, and throughput. The hybrid model achieved an optimized energy efficiency of 90 Tbps/J, reduced latency to 0.0105 ms, and delivered a network throughput of approximately 96 Tbps. The model adapts to varying link densities, maintaining stable performance even in high-density scenarios. These findings underscore the framework's potential to address key challenges in UAV-assisted 6G networks, paving the way for scalable and efficient communication in next-generation wireless systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Small target drone algorithm in low-altitude complex urban scenarios based on ESMS-YOLOv7 LiPE: Lightweight human pose estimator for mobile applications towards automated pose analysis Integrated model for segmentation of glomeruli in kidney images Zero-shot intelligent fault diagnosis via semantic fusion embedding Attention-assisted dual-branch interactive face super-resolution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1