Tiansheng Bai , Jiaxian Wang , Hongqiang Zhang , Fengjun Ji , Wei Song , Shenyi Xiao , Dandan Gao , Jingyu Lu , Lijie Ci , Deping Li
{"title":"Atomic Ni-catalyzed cathode and stabilized Li metal anode for high-performance Li–O2 batteries","authors":"Tiansheng Bai , Jiaxian Wang , Hongqiang Zhang , Fengjun Ji , Wei Song , Shenyi Xiao , Dandan Gao , Jingyu Lu , Lijie Ci , Deping Li","doi":"10.1016/j.esci.2024.100310","DOIUrl":null,"url":null,"abstract":"<div><div>The Li–O<sub>2</sub> battery (LOB) has attracted growing interest, including for its great potential in next-generation energy storage systems due to its extremely high theoretical specific capacity. However, a series of challenges have seriously hindered LOB development, such as sluggish kinetics during the oxygen reduction and oxygen evolution reactions (ORR/OER) at the cathode, the formation of lithium dendrites, and undesirable corrosion at the lithium metal anode. Herein, we propose a strategy based on the ultra-low loading of atomic Ni catalysts to simultaneously boost the ORR/OER at the cathode while stabilizing the Li metal anode. The resultant LOB delivers a superior discharge capacity (> 16,000 mAh g<sup>−1</sup>), excellent long-term cycling stability (> 200 cycles), and enhanced high rate capability (> 300 cycles @ 500 mA g<sup>−1</sup>). The working mechanisms of these atomic Ni catalysts are revealed through carefully designed <em>in situ</em> experiments and theoretical calculations. This work provides a novel research paradigm for designing high-performance LOBs that are useable in practical applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100310"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The Li–O2 battery (LOB) has attracted growing interest, including for its great potential in next-generation energy storage systems due to its extremely high theoretical specific capacity. However, a series of challenges have seriously hindered LOB development, such as sluggish kinetics during the oxygen reduction and oxygen evolution reactions (ORR/OER) at the cathode, the formation of lithium dendrites, and undesirable corrosion at the lithium metal anode. Herein, we propose a strategy based on the ultra-low loading of atomic Ni catalysts to simultaneously boost the ORR/OER at the cathode while stabilizing the Li metal anode. The resultant LOB delivers a superior discharge capacity (> 16,000 mAh g−1), excellent long-term cycling stability (> 200 cycles), and enhanced high rate capability (> 300 cycles @ 500 mA g−1). The working mechanisms of these atomic Ni catalysts are revealed through carefully designed in situ experiments and theoretical calculations. This work provides a novel research paradigm for designing high-performance LOBs that are useable in practical applications.