Carbendazim-chitosan and copper- and cobalt-fusarium nanoparticles biological activity against potato root rot disease caused by Rhizoctonia solani

Gehad M.M. Abd El-Wahab , Yasser I. Khedr , Sanaa A. Masoud , Atef M.K. Nassar
{"title":"Carbendazim-chitosan and copper- and cobalt-fusarium nanoparticles biological activity against potato root rot disease caused by Rhizoctonia solani","authors":"Gehad M.M. Abd El-Wahab ,&nbsp;Yasser I. Khedr ,&nbsp;Sanaa A. Masoud ,&nbsp;Atef M.K. Nassar","doi":"10.1016/j.plana.2025.100136","DOIUrl":null,"url":null,"abstract":"<div><div>Management strategies of potato fungal diseases rely mainly on using conventional fungicides that could cause risks to humans. Therefore, implementing environmentally friendly control strategies would be crucial. Nanotechnology offers innovative strategies with immense prospective to revolutionize plant protection industries and improve the quality of life. Therefore, this investigation aimed to study the fungicidal efficacy of nanoparticles of cobalt (CoNPs) and copper (CuNPs) synthesized with <em>Fusarium solani</em> cell filtrate and carbendazim-loaded in chitosan (CBDNPs) against <em>Rhizoctonia solani</em>. The electron microscope results showed spherical to oval nanoparticles with sizes ranging from 24 to 69 nm. The CBDNPs were more effective against <em>R. solani</em> than both CoNPs and CuNPs, while CoNPs were more efficient against <em>R. solani</em> than CuNPs. The stem canker was controlled equally with CBDNPs, CoNPs, and CuNPs. Additionally, the 500 ppm of CoNPs and CuNPs effectively controlled the black scarf disease. Also, activities of stress-related enzymes (peroxidase, polyphenol oxidase, and phenylalanine ammonialyase) were elevated after 2 weeks of application and continued for more than 4 weeks. Alongside, the potatoes growth and yield parameters were boosted. It would be concluded that nanofungicides and nano-microminerals might offer a potential additive input to the integrated pest management systems.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100136"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Management strategies of potato fungal diseases rely mainly on using conventional fungicides that could cause risks to humans. Therefore, implementing environmentally friendly control strategies would be crucial. Nanotechnology offers innovative strategies with immense prospective to revolutionize plant protection industries and improve the quality of life. Therefore, this investigation aimed to study the fungicidal efficacy of nanoparticles of cobalt (CoNPs) and copper (CuNPs) synthesized with Fusarium solani cell filtrate and carbendazim-loaded in chitosan (CBDNPs) against Rhizoctonia solani. The electron microscope results showed spherical to oval nanoparticles with sizes ranging from 24 to 69 nm. The CBDNPs were more effective against R. solani than both CoNPs and CuNPs, while CoNPs were more efficient against R. solani than CuNPs. The stem canker was controlled equally with CBDNPs, CoNPs, and CuNPs. Additionally, the 500 ppm of CoNPs and CuNPs effectively controlled the black scarf disease. Also, activities of stress-related enzymes (peroxidase, polyphenol oxidase, and phenylalanine ammonialyase) were elevated after 2 weeks of application and continued for more than 4 weeks. Alongside, the potatoes growth and yield parameters were boosted. It would be concluded that nanofungicides and nano-microminerals might offer a potential additive input to the integrated pest management systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Foliar nano Zn-Mo and chlorine dioxide affects use efficiency and distribution of macronutrients in green bean plants Protective layer β-cyclodextrin within peanut (Arachis hypogaea L.) shells’ nanoparticles enhances intracellular stable fluorescence for bioimaging applications: An in vitro and in silico study Biogenic CuO nanoparticles from Camellia sinensis and Pimpinella anisum plant extracts and their role as antimicrobial agents Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation Relative performance of granulated and nano urea on productivity and nitrogen use efficiency of wheat–rice sequence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1