Selenium nanoparticles induce differential shoot/root response of Capsicum annuum seedlings revealed by non-targeted metabolomic analysis

Tonatiu Campos-García , María Fernanda Hernández-Soltero , Overlin Brandon Hernández-Fernández , Juan Vázquez-Martínez , Soledad García-Morales
{"title":"Selenium nanoparticles induce differential shoot/root response of Capsicum annuum seedlings revealed by non-targeted metabolomic analysis","authors":"Tonatiu Campos-García ,&nbsp;María Fernanda Hernández-Soltero ,&nbsp;Overlin Brandon Hernández-Fernández ,&nbsp;Juan Vázquez-Martínez ,&nbsp;Soledad García-Morales","doi":"10.1016/j.plana.2025.100139","DOIUrl":null,"url":null,"abstract":"<div><div>Selenium nanoparticles (SeNPs) are emerging as a novel nanotechnological approach to improve growth, primary and secondary metabolite production, and crop quality. The seedling stage is critical for successful crop establishment and achieving better yields, and SeNPs could improve seedling fitness and metabolism. The impact of SeNPs, previously synthesized with <em>Amphipterygium glaucum</em> extracts and characterized, was evaluated on the seedling stage of serrano pepper (<em>Capsicum annuum</em>). Four weekly foliar applications were made with 0, 2.5, and 10 µM SeNPs. Non-targeted metabolomic analysis was performed by gas chromatography-mass spectrometry (GC-MS) for shoot and root metabolomes. Leaves SPAD values and growth traits (root length, shoot height, stem diameter, and fresh and dry weight) increased with SeNPs application. The highest shoot growth was obtained with 2.5 µM, whereas 10 µM increased root development. Non-targeted metabolomic analysis revealed differences in the abundance of detected metabolites from several families (alpha-hydroxy acids, carboxylic acids, sugar derivatives, fatty acids, terpenes, polyols, phytosterols, and phenolic compounds). Metabolic pathway analysis (MetPA) showed that SeNPs impacted routes related to the L-galactose, ascorbate-aldarate metabolism, fatty acids, citrate cycle, and sugars. SeNPs significantly increased galactopyranose and D-mannitol in shoots and glycerate in roots. These metabolites are involved in cell wall remodeling, stress responses, and energy metabolism. The results contribute to understanding the biological effects of SeNPs and their potential to improve plant growth at 10 µM. Nevertheless, a multi-omics approach combining targeted transcriptomic and metabolomic analyses is needed to fully elucidate the mechanisms underlying the SeNPs effect on plant response to environmental stressors.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Selenium nanoparticles (SeNPs) are emerging as a novel nanotechnological approach to improve growth, primary and secondary metabolite production, and crop quality. The seedling stage is critical for successful crop establishment and achieving better yields, and SeNPs could improve seedling fitness and metabolism. The impact of SeNPs, previously synthesized with Amphipterygium glaucum extracts and characterized, was evaluated on the seedling stage of serrano pepper (Capsicum annuum). Four weekly foliar applications were made with 0, 2.5, and 10 µM SeNPs. Non-targeted metabolomic analysis was performed by gas chromatography-mass spectrometry (GC-MS) for shoot and root metabolomes. Leaves SPAD values and growth traits (root length, shoot height, stem diameter, and fresh and dry weight) increased with SeNPs application. The highest shoot growth was obtained with 2.5 µM, whereas 10 µM increased root development. Non-targeted metabolomic analysis revealed differences in the abundance of detected metabolites from several families (alpha-hydroxy acids, carboxylic acids, sugar derivatives, fatty acids, terpenes, polyols, phytosterols, and phenolic compounds). Metabolic pathway analysis (MetPA) showed that SeNPs impacted routes related to the L-galactose, ascorbate-aldarate metabolism, fatty acids, citrate cycle, and sugars. SeNPs significantly increased galactopyranose and D-mannitol in shoots and glycerate in roots. These metabolites are involved in cell wall remodeling, stress responses, and energy metabolism. The results contribute to understanding the biological effects of SeNPs and their potential to improve plant growth at 10 µM. Nevertheless, a multi-omics approach combining targeted transcriptomic and metabolomic analyses is needed to fully elucidate the mechanisms underlying the SeNPs effect on plant response to environmental stressors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Foliar nano Zn-Mo and chlorine dioxide affects use efficiency and distribution of macronutrients in green bean plants Protective layer β-cyclodextrin within peanut (Arachis hypogaea L.) shells’ nanoparticles enhances intracellular stable fluorescence for bioimaging applications: An in vitro and in silico study Biogenic CuO nanoparticles from Camellia sinensis and Pimpinella anisum plant extracts and their role as antimicrobial agents Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation Relative performance of granulated and nano urea on productivity and nitrogen use efficiency of wheat–rice sequence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1