{"title":"Sulfur- layered porous carbon nanostructured matrix - Co3O4 composites: An enhancement of cycling performance in sodium-sulfur battery","authors":"Premnahth Jeyaraj Janshirani , Suba Devi Rengapillai , Soundarrajan Elumalai , Raghu Subashchandrabose , Wei-Ren Liu , Sivakumar Marimuthu","doi":"10.1016/j.jtice.2025.105978","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>For future applications in electric vehicles, power tools, portable devices, and other areas, developing effective cathode materials for sodium-sulfur batteries is crucial. Sulfur is a promising low-cost cathode material due to its high energy density, environmental friendliness, and natural abundance. Sodium-sulfur batteries, with a theoretical capacity of 1672 mAh g<sup>-1</sup>, offer a higher capacity compared to conventional sodium-ion batteries. However, their use has been limited by the dissolution of intermediate polysulfides, which can impact performance.</div></div><div><h3>Methods</h3><div>In this study, sulfur was blended with various carbon matrices, including hard carbon (HC), reduced graphene oxide (rGO), and multi-walled carbon nanotubes (MWCNTs), along with Co<sub>3</sub>O<sub>4</sub>, through a solid-state reaction and melt diffusion process to prepare sulfur/ Co<sub>3</sub>O<sub>4</sub>/carbon template composites. These composites were then used as cathodes in sodium-sulfur (Na-S) batteries. The physical and electrochemical characteristics of the prepared composites were investigated using various characterization techniques. Raman analysis was employed to confirm the presence of carbon, while X-ray diffraction (XRD) patterns indicated that sulfur is in an orthorhombic structure.</div></div><div><h3>Significant findings</h3><div>The sulfur/ Co<sub>3</sub>O<sub>4</sub>/carbon template composite with 60% sulfur (SCR composite) demonstrated significantly enhanced cycling performance, achieving 925 mAh g<sup>-1</sup> at 0.2 C for the initial cycle. The incorporation of Co<sub>3</sub>O<sub>4</sub> effectively suppressed the polysulfide shuttle effect, thereby sustaining the electrode's capacity. Additionally, the carbon matrix played a crucial role in confining the sulfur within its pores, which helped to limit the loss of active material.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"170 ","pages":"Article 105978"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187610702500029X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
For future applications in electric vehicles, power tools, portable devices, and other areas, developing effective cathode materials for sodium-sulfur batteries is crucial. Sulfur is a promising low-cost cathode material due to its high energy density, environmental friendliness, and natural abundance. Sodium-sulfur batteries, with a theoretical capacity of 1672 mAh g-1, offer a higher capacity compared to conventional sodium-ion batteries. However, their use has been limited by the dissolution of intermediate polysulfides, which can impact performance.
Methods
In this study, sulfur was blended with various carbon matrices, including hard carbon (HC), reduced graphene oxide (rGO), and multi-walled carbon nanotubes (MWCNTs), along with Co3O4, through a solid-state reaction and melt diffusion process to prepare sulfur/ Co3O4/carbon template composites. These composites were then used as cathodes in sodium-sulfur (Na-S) batteries. The physical and electrochemical characteristics of the prepared composites were investigated using various characterization techniques. Raman analysis was employed to confirm the presence of carbon, while X-ray diffraction (XRD) patterns indicated that sulfur is in an orthorhombic structure.
Significant findings
The sulfur/ Co3O4/carbon template composite with 60% sulfur (SCR composite) demonstrated significantly enhanced cycling performance, achieving 925 mAh g-1 at 0.2 C for the initial cycle. The incorporation of Co3O4 effectively suppressed the polysulfide shuttle effect, thereby sustaining the electrode's capacity. Additionally, the carbon matrix played a crucial role in confining the sulfur within its pores, which helped to limit the loss of active material.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.