Modification approach of Northern Wall to improve the performance of solar greenhouse dryers: A review

M.C. Ndukwu , Leonard Akuwueke , Godwin Akpan , M.F. Umunna , Godwin Usoh , Inemesit Ekop , Promise Etim , I. Okosa , Francis Orji , E.C. Ikechukwu-Edeh , Ifiok Ekop , Merlin Simo-Tagne , Lyes Bennamoun , Hongwei Wu , Fidelis Abam
{"title":"Modification approach of Northern Wall to improve the performance of solar greenhouse dryers: A review","authors":"M.C. Ndukwu ,&nbsp;Leonard Akuwueke ,&nbsp;Godwin Akpan ,&nbsp;M.F. Umunna ,&nbsp;Godwin Usoh ,&nbsp;Inemesit Ekop ,&nbsp;Promise Etim ,&nbsp;I. Okosa ,&nbsp;Francis Orji ,&nbsp;E.C. Ikechukwu-Edeh ,&nbsp;Ifiok Ekop ,&nbsp;Merlin Simo-Tagne ,&nbsp;Lyes Bennamoun ,&nbsp;Hongwei Wu ,&nbsp;Fidelis Abam","doi":"10.1016/j.gerr.2024.100104","DOIUrl":null,"url":null,"abstract":"<div><div>Globally, interest is shifting toward green energy due to its environmental appeal. Therefore, to promote energy and environmental conservation in drying, several solar dryers have been developed which offers limitless, clean, and free energy to dry agricultural product. Among these solar dryers, solar greenhouse dryers offer a very simple low-temperature, energy-efficient structure capable of drying large beds of crops by harnessing thermal radiation energy from the sun. To improve the thermal performance in the passive mode especially, several modification approaches have been adopted. This article, therefore, reviewed various possible modification methods that have been adopted to improve the thermal performance of the greenhouse, with a focus on the modification of the northern wall. The various strategies involved in the modification of the north wall structure include creating an opaque north wall with black painted materials, installing a reflective north wall using a mirror, integrating heat storage materials like pebbles or brick, integrating phase change materials into the north wall, digging the soil depth to form a north wall and creating a variable southern roof with a modified north wall. Modifying the northern wall showed higher drying chamber temperature compared to completely transparent convectional greenhouse dryers in all the studies. These modifications can increase the temperature of the modified greenhouse by 13.38∼21.10% for a natural convection solar greenhouse dryer compared to the conventional type. With this approach, the radiation losses from the northern wall can be minimized and the energy management system of the greenhouse can be optimized for higher performance, making it more sustainable and eliminating the use of fossil fuel in agricultural product drying.</div></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"2 4","pages":"Article 100104"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720524000584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, interest is shifting toward green energy due to its environmental appeal. Therefore, to promote energy and environmental conservation in drying, several solar dryers have been developed which offers limitless, clean, and free energy to dry agricultural product. Among these solar dryers, solar greenhouse dryers offer a very simple low-temperature, energy-efficient structure capable of drying large beds of crops by harnessing thermal radiation energy from the sun. To improve the thermal performance in the passive mode especially, several modification approaches have been adopted. This article, therefore, reviewed various possible modification methods that have been adopted to improve the thermal performance of the greenhouse, with a focus on the modification of the northern wall. The various strategies involved in the modification of the north wall structure include creating an opaque north wall with black painted materials, installing a reflective north wall using a mirror, integrating heat storage materials like pebbles or brick, integrating phase change materials into the north wall, digging the soil depth to form a north wall and creating a variable southern roof with a modified north wall. Modifying the northern wall showed higher drying chamber temperature compared to completely transparent convectional greenhouse dryers in all the studies. These modifications can increase the temperature of the modified greenhouse by 13.38∼21.10% for a natural convection solar greenhouse dryer compared to the conventional type. With this approach, the radiation losses from the northern wall can be minimized and the energy management system of the greenhouse can be optimized for higher performance, making it more sustainable and eliminating the use of fossil fuel in agricultural product drying.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parametric study of the decomposition of methane for COx-free H2 and high valued carbon using Ni-based catalyst via machine-learning simulation Potentials and effects of electricity cogeneration via ORC integration in small-scale biomass district heating system Optimal control strategy based on artificial intelligence applied to a continuous dark fermentation reactor for energy recovery from organic wastes Using machine learning methods for long-term technical and economic evaluation of wind power plants Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1