Accelerated commercial battery electrode-level degradation diagnosis via only 11-point charging segments

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2025-01-01 DOI:10.1016/j.esci.2024.100325
Yu Tian , Cheng Lin , Xiangfeng Meng , Xiao Yu , Hailong Li , Rui Xiong
{"title":"Accelerated commercial battery electrode-level degradation diagnosis via only 11-point charging segments","authors":"Yu Tian ,&nbsp;Cheng Lin ,&nbsp;Xiangfeng Meng ,&nbsp;Xiao Yu ,&nbsp;Hailong Li ,&nbsp;Rui Xiong","doi":"10.1016/j.esci.2024.100325","DOIUrl":null,"url":null,"abstract":"<div><div>Accelerated and accurate degradation diagnosis is imperative for the management and reutilization of commercial lithium-ion batteries in the upcoming TWh era. Different from traditional methods, this work proposes a hybrid framework for rapid and accurate degradation diagnosis at the electrode level combining both deep learning, which is used to rapidly and robustly predict polarization-free incremental capacity analysis (ICA) curves in minutes, and physical modeling, which is used to quantitatively reveal the electrode-level degradation modes by decoupling them from the ICA curves. Only measured charging current and voltage signals are used. Results demonstrates that 11 points collected at any starting state-of-charge (SOC) in a minimum of 2.5 ​minutes are sufficient to obtain reliable ICA curves with a mean root mean square error (RMSE) of 0.2774 Ah/V. Accordingly, battery status can be accurately elevated based on their degradation at both macro and electrode levels. Through transfer learning, such a method can also be adapted to different battery chemistries, indicating the enticing potential for wide applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100325"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerated and accurate degradation diagnosis is imperative for the management and reutilization of commercial lithium-ion batteries in the upcoming TWh era. Different from traditional methods, this work proposes a hybrid framework for rapid and accurate degradation diagnosis at the electrode level combining both deep learning, which is used to rapidly and robustly predict polarization-free incremental capacity analysis (ICA) curves in minutes, and physical modeling, which is used to quantitatively reveal the electrode-level degradation modes by decoupling them from the ICA curves. Only measured charging current and voltage signals are used. Results demonstrates that 11 points collected at any starting state-of-charge (SOC) in a minimum of 2.5 ​minutes are sufficient to obtain reliable ICA curves with a mean root mean square error (RMSE) of 0.2774 Ah/V. Accordingly, battery status can be accurately elevated based on their degradation at both macro and electrode levels. Through transfer learning, such a method can also be adapted to different battery chemistries, indicating the enticing potential for wide applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Enhanced bulk and interfacial charge transfer in Fe:VOPO4 modified Mo:BiVO4 photoanodes for photoelectrochemical water splitting Advances in regulating the electron spin effect toward electrocatalysis applications Electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emission: Electrocatalysts, devices and mechanisms Energetic disorder dominates optical properties and recombination dynamics in tin-lead perovskite nanocrystals Understanding multi-scale ion-transport in solid-state lithium batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1