Unconventional protein secretion: Exploring membrane proteins and beyond

IF 6 2区 生物学 Q1 CELL BIOLOGY Current Opinion in Cell Biology Pub Date : 2025-02-03 DOI:10.1016/j.ceb.2025.102469
Long Lin
{"title":"Unconventional protein secretion: Exploring membrane proteins and beyond","authors":"Long Lin","doi":"10.1016/j.ceb.2025.102469","DOIUrl":null,"url":null,"abstract":"<div><div>Protein secretion is essential for cellular communication and function, enabling the delivery of both soluble and integral membrane proteins to the extracellular space and the cell surface. While the classical endoplasmic reticulum (ER)–Golgi pathway has been extensively studied, emerging evidence highlights the existence of unconventional protein secretion (UcPS) pathways. Among these, the mechanisms that enable membrane proteins to bypass the Golgi apparatus remain poorly understood. In this review, I discuss recent advances that shed light on the processes governing Golgi-bypassing membrane secretion. These findings reveal that UcPS of membrane proteins is evolutionarily conserved, operates under both physiological and stress conditions, and involves diverse intermediate carriers and molecular players. Looking ahead, advances in technology and the development of more sophisticated functional assays, along with <em>in vivo</em> models, are expected to further unravel the molecular mechanisms and biological roles of these unconventional pathways.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"93 ","pages":"Article 102469"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000079","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein secretion is essential for cellular communication and function, enabling the delivery of both soluble and integral membrane proteins to the extracellular space and the cell surface. While the classical endoplasmic reticulum (ER)–Golgi pathway has been extensively studied, emerging evidence highlights the existence of unconventional protein secretion (UcPS) pathways. Among these, the mechanisms that enable membrane proteins to bypass the Golgi apparatus remain poorly understood. In this review, I discuss recent advances that shed light on the processes governing Golgi-bypassing membrane secretion. These findings reveal that UcPS of membrane proteins is evolutionarily conserved, operates under both physiological and stress conditions, and involves diverse intermediate carriers and molecular players. Looking ahead, advances in technology and the development of more sophisticated functional assays, along with in vivo models, are expected to further unravel the molecular mechanisms and biological roles of these unconventional pathways.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
期刊最新文献
Organelle homeostasis requires ESCRTs Pioneer factors outline chromatin architecture Replication-transcription symbiosis in the mammalian nucleus: The art of living together The recent advances and implications in cancer therapy for the hippo pathway Unconventional protein secretion: Exploring membrane proteins and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1