Evaluation of early student performance prediction given concept drift

Benedikt Sonnleitner , Tom Madou , Matthias Deceuninck , Filotas Theodosiou , Yves R. Sagaert
{"title":"Evaluation of early student performance prediction given concept drift","authors":"Benedikt Sonnleitner ,&nbsp;Tom Madou ,&nbsp;Matthias Deceuninck ,&nbsp;Filotas Theodosiou ,&nbsp;Yves R. Sagaert","doi":"10.1016/j.caeai.2025.100369","DOIUrl":null,"url":null,"abstract":"<div><div>Forecasting student performance can help to identify students at risk and aids in recommending actions to improve their learning outcomes. That often involves elaborate machine learning pipelines. These tend to use large feature sets including behavioral data from learning management systems or demographic information. However, this complexity can lead to inaccurate predictions when concept drift occurs, or when a large number of features are used with a limited sample size. We investigate the performance of different machine learning pipelines on a data set with change in study behavior during the Covid-19 period. We demonstrate that (i) LASSO, a shrinkage estimator that reduces complexity and overfitting, outperforms several machine learning models under these circumstances, (ii) a linear regression relying on only two handcrafted features achieves higher accuracy and substantially less predictive bias than commonly used, more complex models with large feature sets. Due to their simplicity, these models can serve as a benchmark for future studies and a fallback model when substantial concept or covariate drift is encountered.</div></div>","PeriodicalId":34469,"journal":{"name":"Computers and Education Artificial Intelligence","volume":"8 ","pages":"Article 100369"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666920X25000098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting student performance can help to identify students at risk and aids in recommending actions to improve their learning outcomes. That often involves elaborate machine learning pipelines. These tend to use large feature sets including behavioral data from learning management systems or demographic information. However, this complexity can lead to inaccurate predictions when concept drift occurs, or when a large number of features are used with a limited sample size. We investigate the performance of different machine learning pipelines on a data set with change in study behavior during the Covid-19 period. We demonstrate that (i) LASSO, a shrinkage estimator that reduces complexity and overfitting, outperforms several machine learning models under these circumstances, (ii) a linear regression relying on only two handcrafted features achieves higher accuracy and substantially less predictive bias than commonly used, more complex models with large feature sets. Due to their simplicity, these models can serve as a benchmark for future studies and a fallback model when substantial concept or covariate drift is encountered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.80
自引率
0.00%
发文量
66
审稿时长
50 days
期刊最新文献
Enhancing data analysis and programming skills through structured prompt training: The impact of generative AI in engineering education Understanding the practices, perceptions, and (dis)trust of generative AI among instructors: A mixed-methods study in the U.S. higher education Technological self-efficacy and sense of coherence: Key drivers in teachers' AI acceptance and adoption The influence of AI literacy on complex problem-solving skills through systematic thinking skills and intuition thinking skills: An empirical study in Thai gen Z accounting students Psychometrics of an Elo-based large-scale online learning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1