Effects of adaptive feedback generated by a large language model: A case study in teacher education

Annette Kinder , Fiona J. Briese , Marius Jacobs , Niclas Dern , Niels Glodny , Simon Jacobs , Samuel Leßmann
{"title":"Effects of adaptive feedback generated by a large language model: A case study in teacher education","authors":"Annette Kinder ,&nbsp;Fiona J. Briese ,&nbsp;Marius Jacobs ,&nbsp;Niclas Dern ,&nbsp;Niels Glodny ,&nbsp;Simon Jacobs ,&nbsp;Samuel Leßmann","doi":"10.1016/j.caeai.2024.100349","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of adaptive feedback generated by large language models (LLMs), specifically ChatGPT, on performance in a written diagnostic reasoning task among German pre-service teachers (<em>n</em> = 269). Additionally, the study analyzed user evaluations of the feedback and feedback processing time. Diagnostic reasoning, a critical skill for making informed pedagogical decisions, was assessed through a writing task integrated into a teacher preparation course. Participants were randomly assigned to receive either adaptive feedback generated by ChatGPT or static feedback prepared in advance by a human expert, which was identical for all participants in that condition, before completing a second writing task. The findings reveal that ChatGPT-generated adaptive feedback significantly improved the quality of justification in the students’ writing compared to the static feedback written by an expert. However, no significant difference was observed in decision accuracy between the two groups, suggesting that the type and source of feedback did not impact decision-making processes. Additionally, students who had received LLM-generated adaptive feedback spent more time processing the feedback and subsequently wrote longer texts, indicating longer engagement with the feedback and the task. Participants also rated adaptive feedback as more useful and interesting than static feedback, aligning with previous research on the motivational benefits of adaptive feedback. The study highlights the potential of LLMs like ChatGPT as valuable tools in educational settings, particularly in large courses where providing adaptive feedback is challenging.</div></div>","PeriodicalId":34469,"journal":{"name":"Computers and Education Artificial Intelligence","volume":"8 ","pages":"Article 100349"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666920X24001528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of adaptive feedback generated by large language models (LLMs), specifically ChatGPT, on performance in a written diagnostic reasoning task among German pre-service teachers (n = 269). Additionally, the study analyzed user evaluations of the feedback and feedback processing time. Diagnostic reasoning, a critical skill for making informed pedagogical decisions, was assessed through a writing task integrated into a teacher preparation course. Participants were randomly assigned to receive either adaptive feedback generated by ChatGPT or static feedback prepared in advance by a human expert, which was identical for all participants in that condition, before completing a second writing task. The findings reveal that ChatGPT-generated adaptive feedback significantly improved the quality of justification in the students’ writing compared to the static feedback written by an expert. However, no significant difference was observed in decision accuracy between the two groups, suggesting that the type and source of feedback did not impact decision-making processes. Additionally, students who had received LLM-generated adaptive feedback spent more time processing the feedback and subsequently wrote longer texts, indicating longer engagement with the feedback and the task. Participants also rated adaptive feedback as more useful and interesting than static feedback, aligning with previous research on the motivational benefits of adaptive feedback. The study highlights the potential of LLMs like ChatGPT as valuable tools in educational settings, particularly in large courses where providing adaptive feedback is challenging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.80
自引率
0.00%
发文量
66
审稿时长
50 days
期刊最新文献
Enhancing data analysis and programming skills through structured prompt training: The impact of generative AI in engineering education Understanding the practices, perceptions, and (dis)trust of generative AI among instructors: A mixed-methods study in the U.S. higher education Technological self-efficacy and sense of coherence: Key drivers in teachers' AI acceptance and adoption The influence of AI literacy on complex problem-solving skills through systematic thinking skills and intuition thinking skills: An empirical study in Thai gen Z accounting students Psychometrics of an Elo-based large-scale online learning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1