Deep learning-assisted fluorescence spectroscopy for food quality and safety analysis

IF 15.1 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Trends in Food Science & Technology Pub Date : 2025-02-01 DOI:10.1016/j.tifs.2024.104821
Yuan Yuan , Zengtao Ji , Yanwei Fan , Qian Xu , Ce Shi , Jian Lyu , Per Ertbjerg
{"title":"Deep learning-assisted fluorescence spectroscopy for food quality and safety analysis","authors":"Yuan Yuan ,&nbsp;Zengtao Ji ,&nbsp;Yanwei Fan ,&nbsp;Qian Xu ,&nbsp;Ce Shi ,&nbsp;Jian Lyu ,&nbsp;Per Ertbjerg","doi":"10.1016/j.tifs.2024.104821","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Fluorescence spectroscopy has been widely employed in the quality assessment of food and agricultural products due to its rapid and accurate measurement characteristics. The large amount of fluorescence data or images generated by fluorescence spectroscopy requires more efficient chemometric methods to process and analyze them. However, conventional machine learning models struggle to achieve high-precision predictions when analyzing high-dimensional fluorescence data samples. Deep learning algorithms exhibit powerful automatic learning capabilities in feature extraction and regression modeling of fluorescence spectra.</div></div><div><h3>Scope and approach</h3><div>The complex, abstract and high-dimensional features of fluorescence spectroscopy are firstly demonstrated through the characterization of fluorescent substances in food products. Secondly, this paper highlights various challenges confronting the fluorescence spectrum analysis process and summarizes several deep learning algorithms that can address these solutions, including the convolutional neural network (CNN), long and short-term memory network (LSTM), and auto encoder (AE). Additionally, the application of deep learning models based on fluorescent data in food detection is reviewed in this article according to different testing objectives, including food safety inspections, food quality assessment, adulteration identification, and variety identification. The review also focuses on the future development trend of this technique in food quality and safety detection.</div></div><div><h3>Key findings and conclusions</h3><div>Deep learning approaches combined with fluorescence spectroscopy exhibits immense potential in food quality detection and food discrimination classification. The selections of representative input parameters, suitable preprocessing methods and optimization methods can effectively tackle the problems of lack of samples and model over-fitting. Owing to the rapid advancement of artificial intelligence, the deep learning-based fluorescence spectroscopy technology is poised to evolve towards high precision, high throughput, automation and cost-effectiveness.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"156 ","pages":"Article 104821"},"PeriodicalIF":15.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224424004977","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Fluorescence spectroscopy has been widely employed in the quality assessment of food and agricultural products due to its rapid and accurate measurement characteristics. The large amount of fluorescence data or images generated by fluorescence spectroscopy requires more efficient chemometric methods to process and analyze them. However, conventional machine learning models struggle to achieve high-precision predictions when analyzing high-dimensional fluorescence data samples. Deep learning algorithms exhibit powerful automatic learning capabilities in feature extraction and regression modeling of fluorescence spectra.

Scope and approach

The complex, abstract and high-dimensional features of fluorescence spectroscopy are firstly demonstrated through the characterization of fluorescent substances in food products. Secondly, this paper highlights various challenges confronting the fluorescence spectrum analysis process and summarizes several deep learning algorithms that can address these solutions, including the convolutional neural network (CNN), long and short-term memory network (LSTM), and auto encoder (AE). Additionally, the application of deep learning models based on fluorescent data in food detection is reviewed in this article according to different testing objectives, including food safety inspections, food quality assessment, adulteration identification, and variety identification. The review also focuses on the future development trend of this technique in food quality and safety detection.

Key findings and conclusions

Deep learning approaches combined with fluorescence spectroscopy exhibits immense potential in food quality detection and food discrimination classification. The selections of representative input parameters, suitable preprocessing methods and optimization methods can effectively tackle the problems of lack of samples and model over-fitting. Owing to the rapid advancement of artificial intelligence, the deep learning-based fluorescence spectroscopy technology is poised to evolve towards high precision, high throughput, automation and cost-effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Food Science & Technology
Trends in Food Science & Technology 工程技术-食品科技
CiteScore
32.50
自引率
2.60%
发文量
322
审稿时长
37 days
期刊介绍: Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry. Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.
期刊最新文献
Leaching and proposed recovery strategies of (poly)phenols and oligosaccharides from hydration wastewater during legume processing Co-encapsulation: An effective strategy to enhance the synergistic effects of probiotics and polyphenols Potential for in-field pre-harvest control of foodborne human pathogens in leafy vegetables: Identification of research gaps and opportunities Precision nutrition based on food bioactive components assisted by delivery nanocarriers for ocular health Chemical compositions, health benefits, safety assessment, and industrial applications of wampee (Clausena lansium (Lour.) Skeels): A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1