Yuan Yuan , Zengtao Ji , Yanwei Fan , Qian Xu , Ce Shi , Jian Lyu , Per Ertbjerg
{"title":"Deep learning-assisted fluorescence spectroscopy for food quality and safety analysis","authors":"Yuan Yuan , Zengtao Ji , Yanwei Fan , Qian Xu , Ce Shi , Jian Lyu , Per Ertbjerg","doi":"10.1016/j.tifs.2024.104821","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Fluorescence spectroscopy has been widely employed in the quality assessment of food and agricultural products due to its rapid and accurate measurement characteristics. The large amount of fluorescence data or images generated by fluorescence spectroscopy requires more efficient chemometric methods to process and analyze them. However, conventional machine learning models struggle to achieve high-precision predictions when analyzing high-dimensional fluorescence data samples. Deep learning algorithms exhibit powerful automatic learning capabilities in feature extraction and regression modeling of fluorescence spectra.</div></div><div><h3>Scope and approach</h3><div>The complex, abstract and high-dimensional features of fluorescence spectroscopy are firstly demonstrated through the characterization of fluorescent substances in food products. Secondly, this paper highlights various challenges confronting the fluorescence spectrum analysis process and summarizes several deep learning algorithms that can address these solutions, including the convolutional neural network (CNN), long and short-term memory network (LSTM), and auto encoder (AE). Additionally, the application of deep learning models based on fluorescent data in food detection is reviewed in this article according to different testing objectives, including food safety inspections, food quality assessment, adulteration identification, and variety identification. The review also focuses on the future development trend of this technique in food quality and safety detection.</div></div><div><h3>Key findings and conclusions</h3><div>Deep learning approaches combined with fluorescence spectroscopy exhibits immense potential in food quality detection and food discrimination classification. The selections of representative input parameters, suitable preprocessing methods and optimization methods can effectively tackle the problems of lack of samples and model over-fitting. Owing to the rapid advancement of artificial intelligence, the deep learning-based fluorescence spectroscopy technology is poised to evolve towards high precision, high throughput, automation and cost-effectiveness.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"156 ","pages":"Article 104821"},"PeriodicalIF":15.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224424004977","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Fluorescence spectroscopy has been widely employed in the quality assessment of food and agricultural products due to its rapid and accurate measurement characteristics. The large amount of fluorescence data or images generated by fluorescence spectroscopy requires more efficient chemometric methods to process and analyze them. However, conventional machine learning models struggle to achieve high-precision predictions when analyzing high-dimensional fluorescence data samples. Deep learning algorithms exhibit powerful automatic learning capabilities in feature extraction and regression modeling of fluorescence spectra.
Scope and approach
The complex, abstract and high-dimensional features of fluorescence spectroscopy are firstly demonstrated through the characterization of fluorescent substances in food products. Secondly, this paper highlights various challenges confronting the fluorescence spectrum analysis process and summarizes several deep learning algorithms that can address these solutions, including the convolutional neural network (CNN), long and short-term memory network (LSTM), and auto encoder (AE). Additionally, the application of deep learning models based on fluorescent data in food detection is reviewed in this article according to different testing objectives, including food safety inspections, food quality assessment, adulteration identification, and variety identification. The review also focuses on the future development trend of this technique in food quality and safety detection.
Key findings and conclusions
Deep learning approaches combined with fluorescence spectroscopy exhibits immense potential in food quality detection and food discrimination classification. The selections of representative input parameters, suitable preprocessing methods and optimization methods can effectively tackle the problems of lack of samples and model over-fitting. Owing to the rapid advancement of artificial intelligence, the deep learning-based fluorescence spectroscopy technology is poised to evolve towards high precision, high throughput, automation and cost-effectiveness.
期刊介绍:
Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry.
Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.