Unravelling the geochemical and geochronological diversities of the pre-collisional magmatism: Implications for the subduction dynamics in the Kohistan island arc and Karakorum block, Pakistan
Matee Ullah , Urs Klötzli , Christian Rentenberger , Jiří Sláma , Muhammad Younas , Muhammad Khubab , Mohammad Goudarzi , Tanveer Ahmad
{"title":"Unravelling the geochemical and geochronological diversities of the pre-collisional magmatism: Implications for the subduction dynamics in the Kohistan island arc and Karakorum block, Pakistan","authors":"Matee Ullah , Urs Klötzli , Christian Rentenberger , Jiří Sláma , Muhammad Younas , Muhammad Khubab , Mohammad Goudarzi , Tanveer Ahmad","doi":"10.1016/j.gsf.2025.102003","DOIUrl":null,"url":null,"abstract":"<div><div>The magmatic arcs in the north-west region of Pakistan comprises of numerous volcanic and plutonic bodies of different ages and compositions evolved during the subduction of the Neo- Tethys Ocean under the Eurasian supercontinent. This study focusses on the examination of the granitoids of the Kohistan batholith (a part of Kohistan-Ladakh Island Arc; KLIA) and the Khunjerab pluton, concentrating on their petrological traits, mineral chemistry, in-situ zircon U-Pb geochronology, and whole-rock major and trace element geochemistry. According to zircon U-Pb dating, the Kohistan batholith granitoid was emplaced around 91.7 ± 0.3 Ma, while zircons of the Khunjerab pluton yield ages of 106.4 ± 0.4 Ma and 106.4 ± 1.0 Ma. All the samples from both magmatic units have calcic to calc-alkaline (Na<sub>2</sub>O + K<sub>2</sub>O: 3.6–10.6 wt.% and SiO<sub>2</sub>: 60–73 wt.%), metaluminous to peraluminous properties (Aluminum Saturation Index (ASI): 0.9–1.2). Notably, Nb, Ta, and Ti show depletion, while large ion lithophile elements like Cs, Rb, and K have been enriched. Additionally, we find that SiO<sub>2</sub> and P<sub>2</sub>O<sub>5</sub> have a negative correlation while Rb and Th have a positive correlation, which confirm an I-type arc magmatism. Together with the published literature, TEM analysis, and thermal modelling, our zircon U-Pb results point to a period of continuous magmatic activity from the Late Jurassic to the Late Cretaceous (between 150 Ma and 91 Ma) in the Kohistan Island arc region while the Khunjerab pluton (part of Karakorum block/Eurasian plate) experienced widespread magmatism around 120 Ma to 106 Ma. With SiO<sub>2</sub> concentrations ranging from 67.5–73.3 wt.% and 60–71.4 wt.% and relatively low alkali (Na<sub>2</sub>O + K<sub>2</sub>O) contents between 3.6–10.6 wt.% and 5.1–7.4 wt.% in the Kohistan batholith and Khunjerab pluton respectively, showing clear signs of acidity. The whole rock as well as the mineral geochemical analysis and the elevated water contents (8–10 wt.% and 3.1–3.5 wt.%) inferred from amphibole and biotite chemistry respectively, indicates that the Kohistan batholith was most likely formed through partial melting of a (hydrous) magma originating from a more or less altered metasomatized mantle wedge. Likewise, the Khunjerab pluton whole rock geochemistry also indicates its origin through partial melting of magma originating from an altered metasomatized mantle wedge. This study also shows that both units are not only different in terms of the nature of magmatism but also in terms of their ages i.e., continental arc magmatism occurred in the Khunjerab (Karakoram) block in the middle Cretaceous (106 Ma) while island arc magmatism occurred on the Kohistan side in the late Cretaceous (91 Ma). Further, this study also investigate why multi-grain U-Pb zircon dating is necessary for studying magmatic rocks by using transmission electron microscopy.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 2","pages":"Article 102003"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987125000039","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The magmatic arcs in the north-west region of Pakistan comprises of numerous volcanic and plutonic bodies of different ages and compositions evolved during the subduction of the Neo- Tethys Ocean under the Eurasian supercontinent. This study focusses on the examination of the granitoids of the Kohistan batholith (a part of Kohistan-Ladakh Island Arc; KLIA) and the Khunjerab pluton, concentrating on their petrological traits, mineral chemistry, in-situ zircon U-Pb geochronology, and whole-rock major and trace element geochemistry. According to zircon U-Pb dating, the Kohistan batholith granitoid was emplaced around 91.7 ± 0.3 Ma, while zircons of the Khunjerab pluton yield ages of 106.4 ± 0.4 Ma and 106.4 ± 1.0 Ma. All the samples from both magmatic units have calcic to calc-alkaline (Na2O + K2O: 3.6–10.6 wt.% and SiO2: 60–73 wt.%), metaluminous to peraluminous properties (Aluminum Saturation Index (ASI): 0.9–1.2). Notably, Nb, Ta, and Ti show depletion, while large ion lithophile elements like Cs, Rb, and K have been enriched. Additionally, we find that SiO2 and P2O5 have a negative correlation while Rb and Th have a positive correlation, which confirm an I-type arc magmatism. Together with the published literature, TEM analysis, and thermal modelling, our zircon U-Pb results point to a period of continuous magmatic activity from the Late Jurassic to the Late Cretaceous (between 150 Ma and 91 Ma) in the Kohistan Island arc region while the Khunjerab pluton (part of Karakorum block/Eurasian plate) experienced widespread magmatism around 120 Ma to 106 Ma. With SiO2 concentrations ranging from 67.5–73.3 wt.% and 60–71.4 wt.% and relatively low alkali (Na2O + K2O) contents between 3.6–10.6 wt.% and 5.1–7.4 wt.% in the Kohistan batholith and Khunjerab pluton respectively, showing clear signs of acidity. The whole rock as well as the mineral geochemical analysis and the elevated water contents (8–10 wt.% and 3.1–3.5 wt.%) inferred from amphibole and biotite chemistry respectively, indicates that the Kohistan batholith was most likely formed through partial melting of a (hydrous) magma originating from a more or less altered metasomatized mantle wedge. Likewise, the Khunjerab pluton whole rock geochemistry also indicates its origin through partial melting of magma originating from an altered metasomatized mantle wedge. This study also shows that both units are not only different in terms of the nature of magmatism but also in terms of their ages i.e., continental arc magmatism occurred in the Khunjerab (Karakoram) block in the middle Cretaceous (106 Ma) while island arc magmatism occurred on the Kohistan side in the late Cretaceous (91 Ma). Further, this study also investigate why multi-grain U-Pb zircon dating is necessary for studying magmatic rocks by using transmission electron microscopy.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.