Øyvind Breivik , Bente Moerman , Knut-Frode Dagestad , Tor Nordam , Gaute Hope , Lars Robert Hole , Arthur A. Allen , Lawrence D. Stone
{"title":"The Bayesian backtracking problem in oceanic drift modelling","authors":"Øyvind Breivik , Bente Moerman , Knut-Frode Dagestad , Tor Nordam , Gaute Hope , Lars Robert Hole , Arthur A. Allen , Lawrence D. Stone","doi":"10.1016/j.ocemod.2025.102505","DOIUrl":null,"url":null,"abstract":"<div><div>Backtracking the drift of particles and substances is central to a range of studies in oceanography as well as in law enforcement, search and rescue and the mapping and investigation of marine pollution. Here we demonstrate how a Lagrangian particle model can be used in a forward mode with a Bayesian prior estimate on the release location of the object of interest. We show that for well-behaved drifters, forward and backward (reverse modelling) yield similar results over short periods, if the currents are only weakly divergent. However, for drifters undergoing discontinuous state changes, such as stranding, or objects abruptly and irreversibly changing their drift properties, or for buoyant drifters in strongly convergent flows, backward drift can yield wrongful search areas. We demonstrate this for a case where a liferaft is assigned a wind-speed dependent probability of capsizing, leading to an instantaneous change in drift properties. We also demonstrate the forward and backward methods for a drifter release experiment in the Agulhas current where we also assess the challenges of biases in the current fields. Finally, a method for incorporating multiple observations of debris with a forward model in the Bayesian posterior estimate of the initial location is outlined.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102505"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325000095","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Backtracking the drift of particles and substances is central to a range of studies in oceanography as well as in law enforcement, search and rescue and the mapping and investigation of marine pollution. Here we demonstrate how a Lagrangian particle model can be used in a forward mode with a Bayesian prior estimate on the release location of the object of interest. We show that for well-behaved drifters, forward and backward (reverse modelling) yield similar results over short periods, if the currents are only weakly divergent. However, for drifters undergoing discontinuous state changes, such as stranding, or objects abruptly and irreversibly changing their drift properties, or for buoyant drifters in strongly convergent flows, backward drift can yield wrongful search areas. We demonstrate this for a case where a liferaft is assigned a wind-speed dependent probability of capsizing, leading to an instantaneous change in drift properties. We also demonstrate the forward and backward methods for a drifter release experiment in the Agulhas current where we also assess the challenges of biases in the current fields. Finally, a method for incorporating multiple observations of debris with a forward model in the Bayesian posterior estimate of the initial location is outlined.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.