Highly durability carbon fabric strain sensor: Monitoring environmental changes and tracking human motion

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2025-01-13 DOI:10.1016/j.cartre.2025.100457
Tae Won Ha , Chil-Hyoung Lee , Dae Yun Lim , Young Baek Kim , Hyunjin Cho , Jin Hyeok Kim , Dong-Su Kim
{"title":"Highly durability carbon fabric strain sensor: Monitoring environmental changes and tracking human motion","authors":"Tae Won Ha ,&nbsp;Chil-Hyoung Lee ,&nbsp;Dae Yun Lim ,&nbsp;Young Baek Kim ,&nbsp;Hyunjin Cho ,&nbsp;Jin Hyeok Kim ,&nbsp;Dong-Su Kim","doi":"10.1016/j.cartre.2025.100457","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, e-textile-based strain sensors have been extensively researched for monitoring human motion across various environments. For practical use, fabric sensors must be both comfortable and durable when worn on the skin or integrated into clothing. This study fabricated a strain sensor using a versatile three-dimensional porous carbon fabric. Its performance was evaluated through tests measuring resistance changes under strain and relaxation, moisture absorption stability, tensile strength, temperature sensitivity, and durability over 1,000 repetitive tensile cycles. The sensor demonstrated the capability to detect small changes in ΔR/R₀ of &lt;0.05 % and maintained excellent conductivity, remaining below 20 Ω sq<sup>−1</sup>, even in water. It also exhibited high elasticity and flexibility, achieving up to 50 % elongation and remaining stable over 1,000 repeated measurements. To classify complex finger movements, sensors were attached to the proximal interphalangeal (PIP) joints, allowing simultaneous detection of each finger's motion. Designed as a garment, the carbon fabric strain sensor shows potential for detecting human motion underwater or in extreme environments, with fast response times and high sensitivity.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100457"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, e-textile-based strain sensors have been extensively researched for monitoring human motion across various environments. For practical use, fabric sensors must be both comfortable and durable when worn on the skin or integrated into clothing. This study fabricated a strain sensor using a versatile three-dimensional porous carbon fabric. Its performance was evaluated through tests measuring resistance changes under strain and relaxation, moisture absorption stability, tensile strength, temperature sensitivity, and durability over 1,000 repetitive tensile cycles. The sensor demonstrated the capability to detect small changes in ΔR/R₀ of <0.05 % and maintained excellent conductivity, remaining below 20 Ω sq−1, even in water. It also exhibited high elasticity and flexibility, achieving up to 50 % elongation and remaining stable over 1,000 repeated measurements. To classify complex finger movements, sensors were attached to the proximal interphalangeal (PIP) joints, allowing simultaneous detection of each finger's motion. Designed as a garment, the carbon fabric strain sensor shows potential for detecting human motion underwater or in extreme environments, with fast response times and high sensitivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Electrospun polyvinylpyrrolidone fibers with cobalt ferrite nanoparticles Distinguishing physical vs. chemical templating mechanisms for inducing graphitization in novolac matrix Effect of a bimetal Mn/Zn catalyst supported on activated carbon for selective oxidation of ethyl lactate to ethyl pyruvate Experimental evidence of flexural phonons in low-temperature heat capacity of carbon nanotubes Recent application of carbon nanotubes in energy storage and conversion devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1