Fabrication of electrochemical cell based on i-carrageenan doped NH4HCO2 solid electrolyte

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2025-01-01 DOI:10.1016/j.ssi.2024.116757
V. Moniha , K. Venkatesh , M. Premalatha , S. Monisha , S. Selvalakshmi , B. Archana , M. Alagar , B. Sundaresan
{"title":"Fabrication of electrochemical cell based on i-carrageenan doped NH4HCO2 solid electrolyte","authors":"V. Moniha ,&nbsp;K. Venkatesh ,&nbsp;M. Premalatha ,&nbsp;S. Monisha ,&nbsp;S. Selvalakshmi ,&nbsp;B. Archana ,&nbsp;M. Alagar ,&nbsp;B. Sundaresan","doi":"10.1016/j.ssi.2024.116757","DOIUrl":null,"url":null,"abstract":"<div><div>Solution casting method was used to develop a natural polymer electrolyte (NPE) based on iota carrageenan (iCG) using different amounts of NH<sub>4</sub>HCO<sub>2</sub>. Distilled Water was chosen as the solvent. The structural, thermal, electrical, and electrochemical analyses of the iCG: NH<sub>4</sub>HCO<sub>2</sub> system confirmed its non-crystalline nature, low glass transition temperature (T<sub>g</sub> = 48 °C), maximum DC conductivity and electrochemical stability (3.11 V). The maximum DC conductivity for the composition 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> was observed to be 1.94 × 10<sup>−3</sup> S cm<sup>−1</sup>. A primary proton battery (PPB) was constructed by sandwiching the optimum electrolyte between MnO<sub>2</sub> as the cathode and Zn/ZnSO<sub>4</sub>·7H<sub>2</sub>O as the anode to evaluate the efficiency of the 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> NPE. Additionally, a single PEMFC was fabricated with 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> NPE. An OCV for PPB and PEM fuel cell were found to be 1.60 V and 616 mV, respectively.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116757"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824003059","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solution casting method was used to develop a natural polymer electrolyte (NPE) based on iota carrageenan (iCG) using different amounts of NH4HCO2. Distilled Water was chosen as the solvent. The structural, thermal, electrical, and electrochemical analyses of the iCG: NH4HCO2 system confirmed its non-crystalline nature, low glass transition temperature (Tg = 48 °C), maximum DC conductivity and electrochemical stability (3.11 V). The maximum DC conductivity for the composition 1 g iCG: 0.4 wt% NH4HCO2 was observed to be 1.94 × 10−3 S cm−1. A primary proton battery (PPB) was constructed by sandwiching the optimum electrolyte between MnO2 as the cathode and Zn/ZnSO4·7H2O as the anode to evaluate the efficiency of the 1 g iCG: 0.4 wt% NH4HCO2 NPE. Additionally, a single PEMFC was fabricated with 1 g iCG: 0.4 wt% NH4HCO2 NPE. An OCV for PPB and PEM fuel cell were found to be 1.60 V and 616 mV, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
The unique properties of the monomolecular surface layer of reduced ceria Mechanistic insights into oxygen reduction reaction on metal/perovskite catalysts: Interfacial interactions and reaction pathways Highly ordered Li(Ni0.6Ti0.2Co0.2)O2 (NTC622) cathode material made by all-dry synthesis Structural analysis of the LiCoO2 cathodes/garnet-type Li6.5La3Zr1.5Ta0.5O12 solid electrolyte interface Stable structure and pair distribution function analysis of 0.4Li2MnO3–0.6Li(Mn1/3Ni1/3Co1/3)O2 as cathode materials lithium ion secondary batteries during charge-discharge process using first-principle calculation and quantum beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1