Atomistic insights into the carbonation behavior of olivine minerals: Role of metal cation composition

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2025-03-19 DOI:10.1016/j.ssi.2025.116845
Saisai Zhang, Xinyu Zhang, Li Zhang, Donglin Li, Xuemao Guan, Jianping Zhu, Songhui Liu
{"title":"Atomistic insights into the carbonation behavior of olivine minerals: Role of metal cation composition","authors":"Saisai Zhang,&nbsp;Xinyu Zhang,&nbsp;Li Zhang,&nbsp;Donglin Li,&nbsp;Xuemao Guan,&nbsp;Jianping Zhu,&nbsp;Songhui Liu","doi":"10.1016/j.ssi.2025.116845","DOIUrl":null,"url":null,"abstract":"<div><div>Olivine minerals possess significant potential for CO<sub>2</sub> sequestration through carbonation reactions, with their reactivity highly influenced by cation composition. This study employs first-principles calculations to systematically investigate the impact of metal cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>) on the carbonation behavior of five olivine structures: forsterite (Mg<sub>2</sub>SiO<sub>4</sub>), calcio-olivine (γ-Ca<sub>2</sub>SiO<sub>4</sub>), tephroite (α-Mn<sub>2</sub>SiO<sub>4</sub>), fayalite (α-Fe<sub>2</sub>SiO<sub>4</sub>), and Co-olivine. Analyses of bond characteristics, total bond order density, and local density of states reveal fundamental differences between alkaline earth and transition metal olivines. We have found that in alkaline earth (AE) olivines, carbonation primarily involves an electrophilic attack of O<sup>2−</sup> by H<sup>+</sup> and a nucleophilic attack of metal cations by HCO<sub>3</sub><sup>−</sup>/CO<sub>3</sub><sup>2−</sup> species. Calcio-olivine exhibits higher reactivity than forsterite due to enhanced Ca<sup>2+</sup> nucleophilicity. Conversely, transition metal (TM) olivine reactivity is governed by the multivalent cations, contributing significantly to both electrophilic and nucleophilic pathways. Considering both mineral reserves and carbonation reaction mechanisms, calcio-olivine is determined to be the most advantageous among the five olivine minerals in terms of carbonation reactivity. This atomic-scale understanding guides the development of olivine-based materials with improved carbonation performance for efficient CO<sub>2</sub> sequestration and utilization in carbon capture, utilization, and storage technologies.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116845"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000645","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Olivine minerals possess significant potential for CO2 sequestration through carbonation reactions, with their reactivity highly influenced by cation composition. This study employs first-principles calculations to systematically investigate the impact of metal cations (Mg2+, Ca2+, Mn2+, Fe2+, Co2+) on the carbonation behavior of five olivine structures: forsterite (Mg2SiO4), calcio-olivine (γ-Ca2SiO4), tephroite (α-Mn2SiO4), fayalite (α-Fe2SiO4), and Co-olivine. Analyses of bond characteristics, total bond order density, and local density of states reveal fundamental differences between alkaline earth and transition metal olivines. We have found that in alkaline earth (AE) olivines, carbonation primarily involves an electrophilic attack of O2− by H+ and a nucleophilic attack of metal cations by HCO3/CO32− species. Calcio-olivine exhibits higher reactivity than forsterite due to enhanced Ca2+ nucleophilicity. Conversely, transition metal (TM) olivine reactivity is governed by the multivalent cations, contributing significantly to both electrophilic and nucleophilic pathways. Considering both mineral reserves and carbonation reaction mechanisms, calcio-olivine is determined to be the most advantageous among the five olivine minerals in terms of carbonation reactivity. This atomic-scale understanding guides the development of olivine-based materials with improved carbonation performance for efficient CO2 sequestration and utilization in carbon capture, utilization, and storage technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Atomistic insights into the carbonation behavior of olivine minerals: Role of metal cation composition Distinct influence of Cd in the electrocatalyst of Ni-Co-Cd/CNFs nanoparticles as a catalyst in direct alcohol fuel cells (DAFCs) Interface design for enhancing the performance of solid oxide cell contact layers between interconnects and solid oxide cells Synthesis and electrochemical performance enhancement of Li2MnSiO4 cathode material for lithium-ion batteries via Mn-site Cr doping Structural transformations and proton conductivity of Me4NHSO4 and nanocomposites Me4NHSO4 - SiO2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1