MXenes for sustainable energy: A comprehensive review on conservation and storage applications

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2025-01-22 DOI:10.1016/j.cartre.2025.100471
Mirlan Jussambayev , Kalizhan Shakenov , Shynggyskhan Sultakhan , Ulan Zhantikeyev , Kydyr Askaruly , Kainaubek Toshtay , Seitkhan Azat
{"title":"MXenes for sustainable energy: A comprehensive review on conservation and storage applications","authors":"Mirlan Jussambayev ,&nbsp;Kalizhan Shakenov ,&nbsp;Shynggyskhan Sultakhan ,&nbsp;Ulan Zhantikeyev ,&nbsp;Kydyr Askaruly ,&nbsp;Kainaubek Toshtay ,&nbsp;Seitkhan Azat","doi":"10.1016/j.cartre.2025.100471","DOIUrl":null,"url":null,"abstract":"<div><div>This review explores the potential of MXenes, a novel class of two-dimensional (2D) materials, in advancing energy storage and conservation technologies. MXenes exhibit exceptional physicochemical properties, including a high specific surface area (∼390 m² g⁻¹ for MXene@PPy-800), outstanding electrical conductivity, and robust chemical stability, making them ideal for energy-related applications. In supercapacitors, MXene-based electrodes have demonstrated capacitances exceeding 700 F g⁻¹ at 1 mV s⁻¹, with retention of over 90 % of their initial performance after 10,000 charge/discharge cycles. For lithium-ion batteries, MXenes achieve theoretical capacities ranging from 390 to 600 mAh g⁻¹, depending on the type of MXene material, with experimental reversible capacities often exceeding 400 mAh g⁻¹ at 1C rates and high cycling stability.</div><div>This review synthesizes recent research efforts on the synthesis, structural characterization, and integration of MXenes into energy storage systems. Findings highlight their versatility as electrode materials for supercapacitors, lithium-ion batteries, and fuel cells, as well as their catalytic potential in solar energy conversion. Despite these advancements, challenges remain unresolved. Scalability of MXene synthesis through selective etching methods continues to be a significant technical and economic barrier. Moreover, while MXene-based devices show high initial performance, further work is needed to improve long-term stability in operational and harsh chemical environments.</div><div>By providing a comprehensive overview of MXene-based energy systems, this review identifies critical gaps in understanding their electrochemical mechanisms, particularly ion transport and surface interaction dynamics. Addressing these challenges will be key to optimizing MXene properties and enabling their widespread application in efficient and sustainable energy technologies.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100471"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This review explores the potential of MXenes, a novel class of two-dimensional (2D) materials, in advancing energy storage and conservation technologies. MXenes exhibit exceptional physicochemical properties, including a high specific surface area (∼390 m² g⁻¹ for MXene@PPy-800), outstanding electrical conductivity, and robust chemical stability, making them ideal for energy-related applications. In supercapacitors, MXene-based electrodes have demonstrated capacitances exceeding 700 F g⁻¹ at 1 mV s⁻¹, with retention of over 90 % of their initial performance after 10,000 charge/discharge cycles. For lithium-ion batteries, MXenes achieve theoretical capacities ranging from 390 to 600 mAh g⁻¹, depending on the type of MXene material, with experimental reversible capacities often exceeding 400 mAh g⁻¹ at 1C rates and high cycling stability.
This review synthesizes recent research efforts on the synthesis, structural characterization, and integration of MXenes into energy storage systems. Findings highlight their versatility as electrode materials for supercapacitors, lithium-ion batteries, and fuel cells, as well as their catalytic potential in solar energy conversion. Despite these advancements, challenges remain unresolved. Scalability of MXene synthesis through selective etching methods continues to be a significant technical and economic barrier. Moreover, while MXene-based devices show high initial performance, further work is needed to improve long-term stability in operational and harsh chemical environments.
By providing a comprehensive overview of MXene-based energy systems, this review identifies critical gaps in understanding their electrochemical mechanisms, particularly ion transport and surface interaction dynamics. Addressing these challenges will be key to optimizing MXene properties and enabling their widespread application in efficient and sustainable energy technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Electrospun polyvinylpyrrolidone fibers with cobalt ferrite nanoparticles Distinguishing physical vs. chemical templating mechanisms for inducing graphitization in novolac matrix Effect of a bimetal Mn/Zn catalyst supported on activated carbon for selective oxidation of ethyl lactate to ethyl pyruvate Experimental evidence of flexural phonons in low-temperature heat capacity of carbon nanotubes Recent application of carbon nanotubes in energy storage and conversion devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1