Chemical timescale effects on detonation convergence

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2025-01-14 DOI:10.1016/j.compfluid.2025.106550
Shivam Barwey , Michael Ullman , Ral Bielawski , Venkat Raman
{"title":"Chemical timescale effects on detonation convergence","authors":"Shivam Barwey ,&nbsp;Michael Ullman ,&nbsp;Ral Bielawski ,&nbsp;Venkat Raman","doi":"10.1016/j.compfluid.2025.106550","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical simulations of detonation-containing flows have emerged as crucial tools for designing next-generation power and propulsion devices. As these tools mature, it is important for the combustion community to properly understand and isolate grid resolution effects when simulating detonations. To this end, the objective of this work is to provide a comprehensive analysis of the numerical convergence of unsteady detonation simulations, with focus on isolating the impacts of chemical timescale modifications on convergence characteristics in the context of operator splitting. With the aid of an AMReX-based adaptive mesh refinement flow solver (Sharma et al., 2024)—which enables resolutions up to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1000</mn><mo>)</mo></mrow></mrow></math></span> cells-per-induction length—the convergence analysis is conducted using two kinetics configurations: (1) the simplified three-step Arrhenius-based model mechanism of Short and Quirk (1997), where chemical timescales in the detonation are modified by adjusting activation energies in the initiation and branching reactions, and (2) a detailed hydrogen-air mechanism (Mével et al. (2009), Shepherd (2018)), where the chemical timescales are adjusted by varying the ambient pressure. The convergence of unsteady self-sustained detonations in one-dimensional channels is then analyzed with reference to steady-state theoretical baseline solutions using these mechanisms. The goal of the analysis is to provide a detailed comparison of the effects of grid resolution on both macroscopic (peak pressures and wave speeds) and microscopic (wave structure) quantities of interest, drawing connections between the deviations from steady-state baselines and minimum chemical timescales. In particular, chemical timescale reductions were found to have minimal impact on the convergence of macroscopic properties. However, analyses of microscopic convergence trends, particularly in the reaction front location, revealed a key insight: maintaining the induction time while eliminating prohibitive chemical timescales through mechanism simplifications and combustion modeling can significantly enhance detonation convergence properties. Ultimately, this work uncovers resolution-dependent unsteady detonation convergence regimes and highlights the important role played by not only the chemical timescales, but also the ratio between the chemical timescale and induction time on the numerical convergence of the detonation wave structure.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"289 ","pages":"Article 106550"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000118","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical simulations of detonation-containing flows have emerged as crucial tools for designing next-generation power and propulsion devices. As these tools mature, it is important for the combustion community to properly understand and isolate grid resolution effects when simulating detonations. To this end, the objective of this work is to provide a comprehensive analysis of the numerical convergence of unsteady detonation simulations, with focus on isolating the impacts of chemical timescale modifications on convergence characteristics in the context of operator splitting. With the aid of an AMReX-based adaptive mesh refinement flow solver (Sharma et al., 2024)—which enables resolutions up to O(1000) cells-per-induction length—the convergence analysis is conducted using two kinetics configurations: (1) the simplified three-step Arrhenius-based model mechanism of Short and Quirk (1997), where chemical timescales in the detonation are modified by adjusting activation energies in the initiation and branching reactions, and (2) a detailed hydrogen-air mechanism (Mével et al. (2009), Shepherd (2018)), where the chemical timescales are adjusted by varying the ambient pressure. The convergence of unsteady self-sustained detonations in one-dimensional channels is then analyzed with reference to steady-state theoretical baseline solutions using these mechanisms. The goal of the analysis is to provide a detailed comparison of the effects of grid resolution on both macroscopic (peak pressures and wave speeds) and microscopic (wave structure) quantities of interest, drawing connections between the deviations from steady-state baselines and minimum chemical timescales. In particular, chemical timescale reductions were found to have minimal impact on the convergence of macroscopic properties. However, analyses of microscopic convergence trends, particularly in the reaction front location, revealed a key insight: maintaining the induction time while eliminating prohibitive chemical timescales through mechanism simplifications and combustion modeling can significantly enhance detonation convergence properties. Ultimately, this work uncovers resolution-dependent unsteady detonation convergence regimes and highlights the important role played by not only the chemical timescales, but also the ratio between the chemical timescale and induction time on the numerical convergence of the detonation wave structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board A hybrid immersed-boundary/front-tracking method for interface-resolved simulation of droplet evaporation Non-dimensional meshing criterion of mean flow field discretization for RANS and LES A reconstruction technique for high-order variational finite volume schemes based on conjugate gradient method Mitigation of Shock wave boundary layer interaction using surface arc plasma energy actuators: A computational study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1