Toward carbon dots from citric acid and ethylenediamine, part 1: Structure, optical properties, main luminophore at different stages of synthesis

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2025-01-05 DOI:10.1016/j.cartre.2025.100452
Alexey M. Vervald , Kirill A. Laptinskiy , Maria Yu. Khmeleva , Tatiana A. Dolenko
{"title":"Toward carbon dots from citric acid and ethylenediamine, part 1: Structure, optical properties, main luminophore at different stages of synthesis","authors":"Alexey M. Vervald ,&nbsp;Kirill A. Laptinskiy ,&nbsp;Maria Yu. Khmeleva ,&nbsp;Tatiana A. Dolenko","doi":"10.1016/j.cartre.2025.100452","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dots (CDs) from citric acid (CA) and ethylenediamine (EDA) synthesized under certain parameters of hydrothermal synthesis are reported to demonstrate ultra-bright luminescence in the blue-violet region with a quantum yield up to ∼100 %. However, the questions remain: is this luminescence really belong to the nanoparticles or to concomitant molecular luminophores; at what stage of the CDs’ synthesis such luminophores are formed and lost; how exactly structure of the reacted precursors changes when the synthesis parameters change? In this study, to answer these questions, the array of 392 samples of ethylenediamine and citric acid aqueous solutions undergone the process of hydrothermal method of synthesis, varying EDA:CA ratio in the range of 0–20:1, temperature in 80–200 °C, and reaction time in 0.5–6 h. For all samples the luminescence excitation-emission matrices, optical absorption and FTIR spectra were obtained, quantum yields and luminophores’ intensity of samples’ luminescence at an excitation wavelength of 350 nm were calculated. Based on the obtained data, the processes of CDs’ gradual synthesis – polymerization, dehydration and carbonization – were identified, the changes in the composition of the reaction products during different stages of synthesis were revealed. It was established that the formation of the main samples’ luminophores starts with the polymerization of precursors, accelerates with the initial carbonization of the samples, while the stage of graphitizing carbonization – formation of CDs cores – brings their partially destruction.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100452"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dots (CDs) from citric acid (CA) and ethylenediamine (EDA) synthesized under certain parameters of hydrothermal synthesis are reported to demonstrate ultra-bright luminescence in the blue-violet region with a quantum yield up to ∼100 %. However, the questions remain: is this luminescence really belong to the nanoparticles or to concomitant molecular luminophores; at what stage of the CDs’ synthesis such luminophores are formed and lost; how exactly structure of the reacted precursors changes when the synthesis parameters change? In this study, to answer these questions, the array of 392 samples of ethylenediamine and citric acid aqueous solutions undergone the process of hydrothermal method of synthesis, varying EDA:CA ratio in the range of 0–20:1, temperature in 80–200 °C, and reaction time in 0.5–6 h. For all samples the luminescence excitation-emission matrices, optical absorption and FTIR spectra were obtained, quantum yields and luminophores’ intensity of samples’ luminescence at an excitation wavelength of 350 nm were calculated. Based on the obtained data, the processes of CDs’ gradual synthesis – polymerization, dehydration and carbonization – were identified, the changes in the composition of the reaction products during different stages of synthesis were revealed. It was established that the formation of the main samples’ luminophores starts with the polymerization of precursors, accelerates with the initial carbonization of the samples, while the stage of graphitizing carbonization – formation of CDs cores – brings their partially destruction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Electrospun polyvinylpyrrolidone fibers with cobalt ferrite nanoparticles Distinguishing physical vs. chemical templating mechanisms for inducing graphitization in novolac matrix Effect of a bimetal Mn/Zn catalyst supported on activated carbon for selective oxidation of ethyl lactate to ethyl pyruvate Experimental evidence of flexural phonons in low-temperature heat capacity of carbon nanotubes Recent application of carbon nanotubes in energy storage and conversion devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1