{"title":"Developing a density functional theory model of glassy carbon via carbon defect induction and relaxation","authors":"K. Meerholz , A. Falch , C.G.C.E. van Sittert","doi":"10.1016/j.cartre.2025.100466","DOIUrl":null,"url":null,"abstract":"<div><div>Glassy Carbon (GC) is a non-graphitising carbon known for its thermal stability, conductivity, and resistance to chemical attack, making it valuable in industrial and scientific applications, especially as an electrode substrate in catalysis research. Despite its widespread use, GC's precise structural characteristics is unclear due to synthesis variability. This study developed and validated a computational model to simulate GC's structure. Starting from the R3-carbon allotrope, density functional theory calculations were used to construct a representative GC model, incorporating induced defects to mimic its structural imperfections. Multiple GC slab models were created for comparative analysis. Validation involved comparing theoretical X-ray diffraction data with published data, confirming the model's accuracy in representing the GC's structure. The model showed high correlation with existing models, particularly those by Jurkiewicz et al., emphasizing the effect of formation temperature on GC's structural evolution. These findings enhance the understanding of GC's structural complexities, providing a solid foundation for future research and applications in material science, especially for robust and conductive substrates used in electrocatalysis.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100466"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glassy Carbon (GC) is a non-graphitising carbon known for its thermal stability, conductivity, and resistance to chemical attack, making it valuable in industrial and scientific applications, especially as an electrode substrate in catalysis research. Despite its widespread use, GC's precise structural characteristics is unclear due to synthesis variability. This study developed and validated a computational model to simulate GC's structure. Starting from the R3-carbon allotrope, density functional theory calculations were used to construct a representative GC model, incorporating induced defects to mimic its structural imperfections. Multiple GC slab models were created for comparative analysis. Validation involved comparing theoretical X-ray diffraction data with published data, confirming the model's accuracy in representing the GC's structure. The model showed high correlation with existing models, particularly those by Jurkiewicz et al., emphasizing the effect of formation temperature on GC's structural evolution. These findings enhance the understanding of GC's structural complexities, providing a solid foundation for future research and applications in material science, especially for robust and conductive substrates used in electrocatalysis.