Real-time facial reconstruction and expression replacement based on neural radiation field

Shenning Zhang , Hui Li , Xuefeng Tian
{"title":"Real-time facial reconstruction and expression replacement based on neural radiation field","authors":"Shenning Zhang ,&nbsp;Hui Li ,&nbsp;Xuefeng Tian","doi":"10.1016/j.sasc.2025.200185","DOIUrl":null,"url":null,"abstract":"<div><div>It is now possible to do high-fidelity 3D facial reconstruction and unique view synthesis thanks to the recent discovery of Neural Radiance Fields (NeRF), which has established its substantial importance in the field of 3D vision. However, the operational approaches that are now in use require a significant amount of human engagement, such as the need for users to provide semantic masks and the inconvenience of manual attribute searching for non-expert users. Our approach focuses on enabling the manipulation of NeRF-reconstructed faces with just a single text input. A scene manipulator, specifically a conditional version NeRF with deformable latent codes, is the first thing that this paper trains to accomplish this objective, in dynamic scenes, allowing facial deformations to be controlled through latent codes. However, to synthesize local deformations in a variety of contexts, it is not desirable to describe scene deformations using only a single latent coding. Therefore, this paper proposes a text-driven operation pipeline for facial reconstruction with NeRF, the development of an operating network that is capable of learning to represent scene changes using latent codes that vary at different spatial locations, and the integration of a WeChat mini-program to facilitate practical applications. This application approach enables even non-expert users to easily synthesize novel views. Our method has achieved a certain breakthrough in the field of 3D facial reconstruction, providing users with a simple and convenient text-driven operation approach.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200185"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941925000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is now possible to do high-fidelity 3D facial reconstruction and unique view synthesis thanks to the recent discovery of Neural Radiance Fields (NeRF), which has established its substantial importance in the field of 3D vision. However, the operational approaches that are now in use require a significant amount of human engagement, such as the need for users to provide semantic masks and the inconvenience of manual attribute searching for non-expert users. Our approach focuses on enabling the manipulation of NeRF-reconstructed faces with just a single text input. A scene manipulator, specifically a conditional version NeRF with deformable latent codes, is the first thing that this paper trains to accomplish this objective, in dynamic scenes, allowing facial deformations to be controlled through latent codes. However, to synthesize local deformations in a variety of contexts, it is not desirable to describe scene deformations using only a single latent coding. Therefore, this paper proposes a text-driven operation pipeline for facial reconstruction with NeRF, the development of an operating network that is capable of learning to represent scene changes using latent codes that vary at different spatial locations, and the integration of a WeChat mini-program to facilitate practical applications. This application approach enables even non-expert users to easily synthesize novel views. Our method has achieved a certain breakthrough in the field of 3D facial reconstruction, providing users with a simple and convenient text-driven operation approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries Analyzing the quality evaluation of college English teaching based on probabilistic linguistic multiple-attribute group decision-making Interior design assistant algorithm based on indoor scene analysis Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology Sentiment analysis of movie reviews: A flask application using CNN with RoBERTa embeddings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1