Cascaded intrusion detection system using machine learning

Md. Khabir Uddin Ahamed , Abdul Karim
{"title":"Cascaded intrusion detection system using machine learning","authors":"Md. Khabir Uddin Ahamed ,&nbsp;Abdul Karim","doi":"10.1016/j.sasc.2024.200182","DOIUrl":null,"url":null,"abstract":"<div><div>Cybercrime is becoming an increasing concern these days. In response to the growing cyberthreat, various intrusion detection systems have been developed and proposed to detect anomalies. However, most detection systems suffer from some common issues, such as a high number of false positives that cause regular behaviors to be detected as intrusions, as well as the system’s excessive complexity. Many single classifier models have accuracy issues since they are unable to detect certain anomalies caused by the attack’s polymorphic and zero-day behavior. The signature-based intrusion detection system (SIDS) is unable to identify zero-day intrusions. On the other side, the anomaly-based intrusion detection system (AIDS) generates a significant number of false-positive alarms. In this research, a cascaded intrusion detection system (CIDS) is proposed by combining the one-class support vector machine (OC-SVM)-based AIDS and the decision tree-based SIDS. OC-SVM is used in conjunction with the newly built Distance-Based Intrusion Classification System (DICS). SIDS that use decision trees can discover and classify anomalies. Because OC-SVM is a binary classifier, the intrusion type is determined by DICS. The suggested method aims to detect both popular and well-known zero-day attacks, as well as their type. The CIDS is evaluated using publicly available benchmark datasets, such as the Knowledge Discovery in Databases (KDD) Cup 1999 and the NSL-KDD dataset. The results of the proposed study show that CIDS outperformed both traditional SIDS and AIDS in terms of performance. Both anomalies and their types are detected with high accuracy.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200182"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294192400111X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cybercrime is becoming an increasing concern these days. In response to the growing cyberthreat, various intrusion detection systems have been developed and proposed to detect anomalies. However, most detection systems suffer from some common issues, such as a high number of false positives that cause regular behaviors to be detected as intrusions, as well as the system’s excessive complexity. Many single classifier models have accuracy issues since they are unable to detect certain anomalies caused by the attack’s polymorphic and zero-day behavior. The signature-based intrusion detection system (SIDS) is unable to identify zero-day intrusions. On the other side, the anomaly-based intrusion detection system (AIDS) generates a significant number of false-positive alarms. In this research, a cascaded intrusion detection system (CIDS) is proposed by combining the one-class support vector machine (OC-SVM)-based AIDS and the decision tree-based SIDS. OC-SVM is used in conjunction with the newly built Distance-Based Intrusion Classification System (DICS). SIDS that use decision trees can discover and classify anomalies. Because OC-SVM is a binary classifier, the intrusion type is determined by DICS. The suggested method aims to detect both popular and well-known zero-day attacks, as well as their type. The CIDS is evaluated using publicly available benchmark datasets, such as the Knowledge Discovery in Databases (KDD) Cup 1999 and the NSL-KDD dataset. The results of the proposed study show that CIDS outperformed both traditional SIDS and AIDS in terms of performance. Both anomalies and their types are detected with high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A multi-objective game theory model for sustainable profitability in the tourism supply chain: Integrating human resource management and artificial neural networks Tourism supply chain resilience assessment and optimization based on complex networks and genetic algorithms Application of CNN-based financial risk identification and management convolutional neural networks in financial risk Forecasting the Bitcoin price using the various Machine Learning: A systematic review in data-driven marketing Optimizing multilevel image segmentation with a modified new Caledonian crow learning algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1