Reliability of 3D finite-element and finite-difference inversion of magnetotelluric data including topography for geothermal exploration: Case study in Okuaizu geothermal field

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS Geothermics Pub Date : 2024-12-24 DOI:10.1016/j.geothermics.2024.103213
Toshihiro Uchida, Yusuke Yamaya
{"title":"Reliability of 3D finite-element and finite-difference inversion of magnetotelluric data including topography for geothermal exploration: Case study in Okuaizu geothermal field","authors":"Toshihiro Uchida,&nbsp;Yusuke Yamaya","doi":"10.1016/j.geothermics.2024.103213","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate the performance of the three-dimensional (3D) inversion of magnetotelluric (MT) data for geothermal exploration (where accurate numerical modeling is essential for addressing rough topographies), we utilized two inversion codes (FEMTIC and WSINV3DMT) for the 3D inversion of MT data obtained from the Okuaizu geothermal area, northern Japan. FEMTIC is a finite-element (FEM) inversion code. It can incorporate tetrahedral elements (Tetra) or deformed nonconforming hexahedral elements (DHexa) to construct a 3D mesh. Meanwhile, WSINV3DMT is a finite-difference (FDM) inversion code. It uses rectangular cells to discretize the 3D domain. We prepared an identical subset of the MT data and set an identical noise floor to run the Tetra, DHexa, and WSINV3DMT inversions. The three inversions yielded similar 3D models. These displayed resistivity anomalies related to the cap rock and geothermal reservoir in the area. However, there are several significant differences in the model details, particularly between the FEMTIC and WSINV3DMT inversions. Numerical experiments on 3D synthetic data based on the inversion results of the field data were then conducted for DHexa and WSINV3DMT to examine the factors causing these differences. We set two low-resistivity anomalies (shallow and deep) embedded in a homogeneous earth with real topography. The experiments revealed that the DHexa inversion effectively recovered the two anomalies. However, the WSINV3DMT inversion may have failed to recover these. In particular, the deep anomaly was reconstructed ineffectively owing to numerical errors when we included a rough topographic variation in the model. Therefore, we considered that the inversion results of field data using an FDM code may have unreliable anomalies for an MT dataset obtained in a rough terrain environment. The inverted models of the field data in Okuaizu by Tetra and DHexa showed good agreement with existing borehole logging data and the geothermal conceptual model of the area.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"127 ","pages":"Article 103213"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524002992","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the performance of the three-dimensional (3D) inversion of magnetotelluric (MT) data for geothermal exploration (where accurate numerical modeling is essential for addressing rough topographies), we utilized two inversion codes (FEMTIC and WSINV3DMT) for the 3D inversion of MT data obtained from the Okuaizu geothermal area, northern Japan. FEMTIC is a finite-element (FEM) inversion code. It can incorporate tetrahedral elements (Tetra) or deformed nonconforming hexahedral elements (DHexa) to construct a 3D mesh. Meanwhile, WSINV3DMT is a finite-difference (FDM) inversion code. It uses rectangular cells to discretize the 3D domain. We prepared an identical subset of the MT data and set an identical noise floor to run the Tetra, DHexa, and WSINV3DMT inversions. The three inversions yielded similar 3D models. These displayed resistivity anomalies related to the cap rock and geothermal reservoir in the area. However, there are several significant differences in the model details, particularly between the FEMTIC and WSINV3DMT inversions. Numerical experiments on 3D synthetic data based on the inversion results of the field data were then conducted for DHexa and WSINV3DMT to examine the factors causing these differences. We set two low-resistivity anomalies (shallow and deep) embedded in a homogeneous earth with real topography. The experiments revealed that the DHexa inversion effectively recovered the two anomalies. However, the WSINV3DMT inversion may have failed to recover these. In particular, the deep anomaly was reconstructed ineffectively owing to numerical errors when we included a rough topographic variation in the model. Therefore, we considered that the inversion results of field data using an FDM code may have unreliable anomalies for an MT dataset obtained in a rough terrain environment. The inverted models of the field data in Okuaizu by Tetra and DHexa showed good agreement with existing borehole logging data and the geothermal conceptual model of the area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
期刊最新文献
Detection and constraints of geothermal latent heat zones under the complex terrain of the Western Sichuan Plateau: A fusion of multi-source temporal remote sensing data Investigation into the influence of multiple factors on the buried pipes clusters system based on similarity theory Petrogenesis and comprehensive thermal assessment of the Dikili-Bergama region, western Anatolia Syn- to post-rift thermal evolution of the Pechelbronn sub-basin (Upper Rhine Graben) Experimental study on the thermo-mechanical behavior of steel pipe energy pile groups with and without phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1