Detection and constraints of geothermal latent heat zones under the complex terrain of the Western Sichuan Plateau: A fusion of multi-source temporal remote sensing data

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS Geothermics Pub Date : 2025-03-09 DOI:10.1016/j.geothermics.2025.103287
Ben Dong , Bo Li , Rongcai Song , Haiwen Chen , Yingchun Wang
{"title":"Detection and constraints of geothermal latent heat zones under the complex terrain of the Western Sichuan Plateau: A fusion of multi-source temporal remote sensing data","authors":"Ben Dong ,&nbsp;Bo Li ,&nbsp;Rongcai Song ,&nbsp;Haiwen Chen ,&nbsp;Yingchun Wang","doi":"10.1016/j.geothermics.2025.103287","DOIUrl":null,"url":null,"abstract":"<div><div>Geothermal energy is a sustainable and renewable resource with significant potential, particularly in regions with complex topography, such as high plateaus. However, accurately detecting geothermal anomalies in these areas presents challenges due to the influence of topographic factors and the resolution limitations of remote sensing data. To address these challenges, this study proposes a novel method that integrates multi-source and multi-temporal remote sensing data. The method leverages the high temporal resolution of MODIS, the high spatial resolution of Landsat 8, and topographic parameters derived from ALOS data. By combining dynamic multi-temporal thresholding and topographic correction, the approach effectively distinguishes geothermal signals from pseudo-thermal anomalies induced by solar radiation. The results demonstrate that the integration of multi-source remote sensing data enables the accurate identification of fine-scale thermal anomalies, consistent with the regional tectonic heat-control mechanisms. Topographic factors, including slope, aspect, and hillshade, are shown to significantly influence the spatial distribution of surface temperature. Following topographic correction, the model eliminates 36 %–45 % of pseudo-thermal anomaly areas, with high validation accuracy against actual hot spring locations. These findings underscore the critical importance of topographic correction in geothermal anomaly detection. By effectively reducing false thermal anomalies and enhancing the precision of geothermal zone identification, this integrated approach improves the applicability of remote sensing techniques for geothermal exploration. Furthermore, it provides a robust framework for assessing sustainable energy resources in regions with complex terrain.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"130 ","pages":"Article 103287"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650525000392","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Geothermal energy is a sustainable and renewable resource with significant potential, particularly in regions with complex topography, such as high plateaus. However, accurately detecting geothermal anomalies in these areas presents challenges due to the influence of topographic factors and the resolution limitations of remote sensing data. To address these challenges, this study proposes a novel method that integrates multi-source and multi-temporal remote sensing data. The method leverages the high temporal resolution of MODIS, the high spatial resolution of Landsat 8, and topographic parameters derived from ALOS data. By combining dynamic multi-temporal thresholding and topographic correction, the approach effectively distinguishes geothermal signals from pseudo-thermal anomalies induced by solar radiation. The results demonstrate that the integration of multi-source remote sensing data enables the accurate identification of fine-scale thermal anomalies, consistent with the regional tectonic heat-control mechanisms. Topographic factors, including slope, aspect, and hillshade, are shown to significantly influence the spatial distribution of surface temperature. Following topographic correction, the model eliminates 36 %–45 % of pseudo-thermal anomaly areas, with high validation accuracy against actual hot spring locations. These findings underscore the critical importance of topographic correction in geothermal anomaly detection. By effectively reducing false thermal anomalies and enhancing the precision of geothermal zone identification, this integrated approach improves the applicability of remote sensing techniques for geothermal exploration. Furthermore, it provides a robust framework for assessing sustainable energy resources in regions with complex terrain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
期刊最新文献
Detection and constraints of geothermal latent heat zones under the complex terrain of the Western Sichuan Plateau: A fusion of multi-source temporal remote sensing data Investigation into the influence of multiple factors on the buried pipes clusters system based on similarity theory Petrogenesis and comprehensive thermal assessment of the Dikili-Bergama region, western Anatolia Syn- to post-rift thermal evolution of the Pechelbronn sub-basin (Upper Rhine Graben) Experimental study on the thermo-mechanical behavior of steel pipe energy pile groups with and without phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1