Optimizing inhibitor injection in geothermal wells with electrical submersible pump

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS Geothermics Pub Date : 2024-12-18 DOI:10.1016/j.geothermics.2024.103238
Hakki Aydin , Seray Işık Tezel , Selcuk Erol
{"title":"Optimizing inhibitor injection in geothermal wells with electrical submersible pump","authors":"Hakki Aydin ,&nbsp;Seray Işık Tezel ,&nbsp;Selcuk Erol","doi":"10.1016/j.geothermics.2024.103238","DOIUrl":null,"url":null,"abstract":"<div><div>Electrical submersible pump (ESP) is a reliable artificial lift method to extend productive lifespan of geothermal wells. In the geothermal industry a common practice involves installing ESPs below the well's flashing depth. This placement approach aims to mitigate the risk of mineral precipitation, which can occur when hot geothermal fluids transition to a two-phase state (liquid and vapor) as pressure decreases. Positioning the pump below the flashing depth also prevents pump's underloading and gas cavitation. The inhibitor injection line usually integrated around the ESP string and installed downstream of the ESP motor. However, this standard practice introduces a challenge regarding inhibitor performance. While this placement ensures effective distribution of inhibitors throughout the production flow, the extended travel time from the surface to the point of application at the ESP can diminish inhibitor effectiveness due to continuous exposure to high temperatures throughout the wellbore. This study proposes relocating the inhibitor injection point within the production tubing closer to the flashing depth. This reduces inhibitor travel time from 108 min to 48 min and has the potential to significantly improve inhibitor effectiveness. Consequently, the implementation of capillary tubing is anticipated to yield annual cost savings per wellbore of approximately USD 10,000, coupled with the mitigation of mineral deposits within the studied well equipped with ESP. To evaluate this approach, a wellbore simulation tool and PHREEQC were employed to dynamically model the pressure and temperature profiles alongside the geochemical evolution of the produced fluids in the wellbore. This modeling approach offers significant value by potentially enabling the optimization of inhibitor usage and reducing the length of required inhibitor injection line.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"127 ","pages":"Article 103238"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524003249","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical submersible pump (ESP) is a reliable artificial lift method to extend productive lifespan of geothermal wells. In the geothermal industry a common practice involves installing ESPs below the well's flashing depth. This placement approach aims to mitigate the risk of mineral precipitation, which can occur when hot geothermal fluids transition to a two-phase state (liquid and vapor) as pressure decreases. Positioning the pump below the flashing depth also prevents pump's underloading and gas cavitation. The inhibitor injection line usually integrated around the ESP string and installed downstream of the ESP motor. However, this standard practice introduces a challenge regarding inhibitor performance. While this placement ensures effective distribution of inhibitors throughout the production flow, the extended travel time from the surface to the point of application at the ESP can diminish inhibitor effectiveness due to continuous exposure to high temperatures throughout the wellbore. This study proposes relocating the inhibitor injection point within the production tubing closer to the flashing depth. This reduces inhibitor travel time from 108 min to 48 min and has the potential to significantly improve inhibitor effectiveness. Consequently, the implementation of capillary tubing is anticipated to yield annual cost savings per wellbore of approximately USD 10,000, coupled with the mitigation of mineral deposits within the studied well equipped with ESP. To evaluate this approach, a wellbore simulation tool and PHREEQC were employed to dynamically model the pressure and temperature profiles alongside the geochemical evolution of the produced fluids in the wellbore. This modeling approach offers significant value by potentially enabling the optimization of inhibitor usage and reducing the length of required inhibitor injection line.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
期刊最新文献
Detection and constraints of geothermal latent heat zones under the complex terrain of the Western Sichuan Plateau: A fusion of multi-source temporal remote sensing data Investigation into the influence of multiple factors on the buried pipes clusters system based on similarity theory Petrogenesis and comprehensive thermal assessment of the Dikili-Bergama region, western Anatolia Syn- to post-rift thermal evolution of the Pechelbronn sub-basin (Upper Rhine Graben) Experimental study on the thermo-mechanical behavior of steel pipe energy pile groups with and without phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1