Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology

Yiran Zhang, Lina Dong
{"title":"Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology","authors":"Yiran Zhang,&nbsp;Lina Dong","doi":"10.1016/j.sasc.2025.200187","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of the intelligent era, improving the positioning accuracy and operational stability of robots has become an urgent problem that needs to be solved. This study combines the advantages and disadvantages of visual synchronous positioning and mapping technology, inertial measurement units, and ultra-wideband technology to design a combined positioning system. The system first uses the pre-integration method of the inertial measurement unit to align the inertial measurement unit with the camera frequency. Then, it uses a tightly coupled method to fuse the measurement data of the system and the inertial measurement unit, forming a visual-inertial system. The study uses extended Kalman filtering to fuse the constructed visual-inertial system with ultra-wideband technology, creating an ultra-wideband/visual-inertial integrated system. Finally, simulation analysis was conducted on the constructed composite system. The results indicated that the RMSE of the ultra-wideband/visual-inertial system under light and dark conditions were 0.0123 and 0.0212, and 0.0114 and 0.0123, respectively, in the motion trajectories with and without forming a loop. In extremely complex motion trajectories, the RMSE error of the research system was 0.0123. This indicates that regardless of the conditions, the research system has long-term robustness and high-precision positioning performance.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200187"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941925000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of the intelligent era, improving the positioning accuracy and operational stability of robots has become an urgent problem that needs to be solved. This study combines the advantages and disadvantages of visual synchronous positioning and mapping technology, inertial measurement units, and ultra-wideband technology to design a combined positioning system. The system first uses the pre-integration method of the inertial measurement unit to align the inertial measurement unit with the camera frequency. Then, it uses a tightly coupled method to fuse the measurement data of the system and the inertial measurement unit, forming a visual-inertial system. The study uses extended Kalman filtering to fuse the constructed visual-inertial system with ultra-wideband technology, creating an ultra-wideband/visual-inertial integrated system. Finally, simulation analysis was conducted on the constructed composite system. The results indicated that the RMSE of the ultra-wideband/visual-inertial system under light and dark conditions were 0.0123 and 0.0212, and 0.0114 and 0.0123, respectively, in the motion trajectories with and without forming a loop. In extremely complex motion trajectories, the RMSE error of the research system was 0.0123. This indicates that regardless of the conditions, the research system has long-term robustness and high-precision positioning performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A multi-objective game theory model for sustainable profitability in the tourism supply chain: Integrating human resource management and artificial neural networks Tourism supply chain resilience assessment and optimization based on complex networks and genetic algorithms Application of CNN-based financial risk identification and management convolutional neural networks in financial risk Forecasting the Bitcoin price using the various Machine Learning: A systematic review in data-driven marketing Optimizing multilevel image segmentation with a modified new Caledonian crow learning algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1