Short-term load forecasting with deep learning: Improving performance with post-training specialization

Q1 Social Sciences Electricity Journal Pub Date : 2025-02-01 DOI:10.1016/j.tej.2024.107449
Igor Westphal
{"title":"Short-term load forecasting with deep learning: Improving performance with post-training specialization","authors":"Igor Westphal","doi":"10.1016/j.tej.2024.107449","DOIUrl":null,"url":null,"abstract":"<div><div>Load forecasting has increasingly relied on deep learning models due to their ability to capture complex non-linear relationships. However, these models require substantial amounts of data for effective training. Data sparsity during peak load periods can degrade the performance of deep learning models to the point that they under-perform much simpler models. To address this issue, this paper proposes a post-training specialization method in which several copies of the original deep learning model are retrained for specific forecasting tasks. Results indicate an increase in performance in all baseline models used in this paper, and the method can potentially improve the forecasting of current applications at a low computational cost.</div></div>","PeriodicalId":35642,"journal":{"name":"Electricity Journal","volume":"38 1","pages":"Article 107449"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electricity Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040619024000848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Load forecasting has increasingly relied on deep learning models due to their ability to capture complex non-linear relationships. However, these models require substantial amounts of data for effective training. Data sparsity during peak load periods can degrade the performance of deep learning models to the point that they under-perform much simpler models. To address this issue, this paper proposes a post-training specialization method in which several copies of the original deep learning model are retrained for specific forecasting tasks. Results indicate an increase in performance in all baseline models used in this paper, and the method can potentially improve the forecasting of current applications at a low computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Electricity Journal
Electricity Journal Business, Management and Accounting-Business and International Management
CiteScore
5.80
自引率
0.00%
发文量
95
审稿时长
31 days
期刊介绍: The Electricity Journal is the leading journal in electric power policy. The journal deals primarily with fuel diversity and the energy mix needed for optimal energy market performance, and therefore covers the full spectrum of energy, from coal, nuclear, natural gas and oil, to renewable energy sources including hydro, solar, geothermal and wind power. Recently, the journal has been publishing in emerging areas including energy storage, microgrid strategies, dynamic pricing, cyber security, climate change, cap and trade, distributed generation, net metering, transmission and generation market dynamics. The Electricity Journal aims to bring together the most thoughtful and influential thinkers globally from across industry, practitioners, government, policymakers and academia. The Editorial Advisory Board is comprised of electric industry thought leaders who have served as regulators, consultants, litigators, and market advocates. Their collective experience helps ensure that the most relevant and thought-provoking issues are presented to our readers, and helps navigate the emerging shape and design of the electricity/energy industry.
期刊最新文献
Short-term load forecasting with deep learning: Improving performance with post-training specialization Electrification of the joint force: Challenges and opportunities for competition in the Pacific and Arctic theaters How income and price changes affect the electricity demand? Evidence from Türkiye’s residential sector Aligning electric vehicle charging with the sun: An opportunity for daytime charging? Practical energy equity decision making in resource-constrained communities: A case study in the Navajo Nation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1