Moreno Ascani , Wojciech P. Lipínski , Iris B.A. Smokers , Piramsuya Neethirajah , Max Vogel , Evan Spruijt , Gabriele Sadowski , Christoph Held
{"title":"Molecular thermodynamics of complex coacervate systems. Part II: Measuring and modeling of the phase envelope using pePC-SAFT","authors":"Moreno Ascani , Wojciech P. Lipínski , Iris B.A. Smokers , Piramsuya Neethirajah , Max Vogel , Evan Spruijt , Gabriele Sadowski , Christoph Held","doi":"10.1016/j.fluid.2024.114305","DOIUrl":null,"url":null,"abstract":"<div><div>Complex coacervation is an associative liquid-liquid phase separation (LLPS) observed in aqueous solutions of oppositely charged polyions. Coacervates are relevant systems in biology, chemistry, food and cosmetics industry, medicine as well as in engineering e.g. as extracting agents, for drug delivery or as gelling, foaming or stabilizing agents. Unfortunately, accurate experimental data on equilibrium compositions of complex coacervates are still scarce in the literature. Here, the LLPS of the coacervate-forming system water-Na<sub>2</sub>NADH-protamine sulfate was measured at <em>T</em> = 298.15 K and p = 1.013 bar and at different polycation/polyanion ratios. Qualitative features of the experimental phase envelope are carefully discussed based on molecular interactions in this system. Compared to equilibrium data of the system water-Na<sub>2</sub>NADH-poly-l-lysine HBr, the system water-Na<sub>2</sub>NADH-protamine sulfate revealed a larger miscibility gap, suggesting a strong contribution of non-coulombic interactions to the phase behavior of this coacervate system. Experimental data were successfully modeled using the recently developed pePC-SAFT (Ascani et al., Part 1, <em>Fluid Phase Equilibria</em>, under review). The pePC-SAFT predicted phase envelope was in very good agreement with the measured experimental points. To the best of our knowledge, this is the first time that a physically sound model was used to model the phase envelope of a biologically relevant complex coacervate system.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"591 ","pages":"Article 114305"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002802","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Complex coacervation is an associative liquid-liquid phase separation (LLPS) observed in aqueous solutions of oppositely charged polyions. Coacervates are relevant systems in biology, chemistry, food and cosmetics industry, medicine as well as in engineering e.g. as extracting agents, for drug delivery or as gelling, foaming or stabilizing agents. Unfortunately, accurate experimental data on equilibrium compositions of complex coacervates are still scarce in the literature. Here, the LLPS of the coacervate-forming system water-Na2NADH-protamine sulfate was measured at T = 298.15 K and p = 1.013 bar and at different polycation/polyanion ratios. Qualitative features of the experimental phase envelope are carefully discussed based on molecular interactions in this system. Compared to equilibrium data of the system water-Na2NADH-poly-l-lysine HBr, the system water-Na2NADH-protamine sulfate revealed a larger miscibility gap, suggesting a strong contribution of non-coulombic interactions to the phase behavior of this coacervate system. Experimental data were successfully modeled using the recently developed pePC-SAFT (Ascani et al., Part 1, Fluid Phase Equilibria, under review). The pePC-SAFT predicted phase envelope was in very good agreement with the measured experimental points. To the best of our knowledge, this is the first time that a physically sound model was used to model the phase envelope of a biologically relevant complex coacervate system.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.