3D time-series phenotyping of lettuce in greenhouses

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2025-02-01 DOI:10.1016/j.biosystemseng.2025.01.004
Hanyu Ma , Weiliang Wen , Wenbo Gou , Xianju Lu , Jiangchuan Fan , Minggang Zhang , Yuqiang Liang , Shenghao Gu , Xinyu Guo
{"title":"3D time-series phenotyping of lettuce in greenhouses","authors":"Hanyu Ma ,&nbsp;Weiliang Wen ,&nbsp;Wenbo Gou ,&nbsp;Xianju Lu ,&nbsp;Jiangchuan Fan ,&nbsp;Minggang Zhang ,&nbsp;Yuqiang Liang ,&nbsp;Shenghao Gu ,&nbsp;Xinyu Guo","doi":"10.1016/j.biosystemseng.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring the growth dynamics of plants in three-dimensional (3D) space is one of the most fundamental data acquisition requirements for plant breeding and cultivation. The rapid development of high-throughput plant phenotyping platforms (HTPPP) makes it possible to obtain big data in plant phenomics. However, how to extract phenotypes from the raw phenotyping data to obtain the agronomic indicators demanded by agronomists has become an urgent issue. In this study, time-series point clouds of potted lettuce plants were generated via multi-view stereo (MVS) method using top-view Red, Green, Blue (RGB) images acquired by a rail-driven HTPPP in a greenhouse. A time-series point cloud registration method was proposed by extracting pots as features, and daily population-individual plant point cloud segmentation was achieved based on the registration information and contrasted with two other different segmentation methods. Then vegetation and pot was segmented using the random forest (RF). Finally, the phenotypes including plant height, crown width, and convex hull volume of each plant were extracted. The results show that the average mean intersection over union (mIoU), mean precision (mP<sub>r</sub>), mean recall (mR<sub>e</sub>), and mean F1-score (mF<sub>1</sub>) of the population-individual plant segmentation were 71.86%, 97.38%, 86.08%, and 91.02%, respectively. The vegetation-pot point cloud segmentation achieved an accuracy of 98.81%. The averaged coefficient of determination (R<sup>2</sup>) for the extracted plant height and crown width were 0.79 and 0.60, respectively, with the averaged root mean square error (RMSE) being 0.05 m and 0.03 m, respectively. The accuracy of plant height was significantly higher than that of PlantEye. The extracted phenotypes can be used to quantitatively differentiate the growth dynamics of different sub-populations of lettuce plants. This study presents an automated solution for extracting time-series 3D phenotypes under HTPPP in a greenhouse. It provides crucial technological support for efficient phenotype acquisition in plant breeding and cultivation.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"250 ","pages":"Pages 250-269"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511025000042","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring the growth dynamics of plants in three-dimensional (3D) space is one of the most fundamental data acquisition requirements for plant breeding and cultivation. The rapid development of high-throughput plant phenotyping platforms (HTPPP) makes it possible to obtain big data in plant phenomics. However, how to extract phenotypes from the raw phenotyping data to obtain the agronomic indicators demanded by agronomists has become an urgent issue. In this study, time-series point clouds of potted lettuce plants were generated via multi-view stereo (MVS) method using top-view Red, Green, Blue (RGB) images acquired by a rail-driven HTPPP in a greenhouse. A time-series point cloud registration method was proposed by extracting pots as features, and daily population-individual plant point cloud segmentation was achieved based on the registration information and contrasted with two other different segmentation methods. Then vegetation and pot was segmented using the random forest (RF). Finally, the phenotypes including plant height, crown width, and convex hull volume of each plant were extracted. The results show that the average mean intersection over union (mIoU), mean precision (mPr), mean recall (mRe), and mean F1-score (mF1) of the population-individual plant segmentation were 71.86%, 97.38%, 86.08%, and 91.02%, respectively. The vegetation-pot point cloud segmentation achieved an accuracy of 98.81%. The averaged coefficient of determination (R2) for the extracted plant height and crown width were 0.79 and 0.60, respectively, with the averaged root mean square error (RMSE) being 0.05 m and 0.03 m, respectively. The accuracy of plant height was significantly higher than that of PlantEye. The extracted phenotypes can be used to quantitatively differentiate the growth dynamics of different sub-populations of lettuce plants. This study presents an automated solution for extracting time-series 3D phenotypes under HTPPP in a greenhouse. It provides crucial technological support for efficient phenotype acquisition in plant breeding and cultivation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
Piecewise physics-informed neural networks for surrogate modelling of non-smooth system in elasticity problems using domain decomposition Mechanism study of the effect of a surface liquid film on the collision adhesion behaviour of rice stalks Study of pollen deposition performance of an airflow-assisted targeted pollinating device for kiwi fruit flower Virtual model of kenaf bast fibres based on solid mechanics and finite element study 3D time-series phenotyping of lettuce in greenhouses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1